留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetospheric Physics in China

CAO Jinbin YANG Junying

CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. 空间科学学报, 2020, 40(5): 778-855. doi: 10.11728/cjss2020.05.778
引用本文: CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. 空间科学学报, 2020, 40(5): 778-855. doi: 10.11728/cjss2020.05.778
CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. Chinese Journal of Space Science, 2020, 40(5): 778-855. doi: 10.11728/cjss2020.05.778
Citation: CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. Chinese Journal of Space Science, 2020, 40(5): 778-855. doi: 10.11728/cjss2020.05.778

Magnetospheric Physics in China

doi: 10.11728/cjss2020.05.778
基金项目: 

Supported by National Natural Science Foundation of China Grants (41821003, 41941001)

详细信息
    作者简介:

    CAO Jinbin,E-mail:jbcao@buaa.edu.cn

  • 中图分类号: P352

Magnetospheric Physics in China

Funds: 

Supported by National Natural Science Foundation of China Grants (41821003, 41941001)

More Information
    Author Bio:

    CAO Jinbin,E-mail:jbcao@buaa.edu.cn

  • 摘要: In the past two years, many progresses were made in Magnetospheric Physics by using the data of SuperMAG, Double Star Program, Cluster, THEMIS, RBSP, DMSP, DEMETER, NOAA, Van Allen probe, Swarm, MMS, ARTEMIS, MESSENGER, Fengyun, BeiDa etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 248 publications from January 2018 to December 2019. The subjects covered various sub-branches of Magnetospheric Physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphere-ionosphere interaction, radiation belt, ring current, whistler waves, plasmasphere, outer magnetosphere, magnetotail, planetary magnetosphere, and technique.

     

  • [1] CHEN S, CHAI L, XU K, WEI Y, et al.Estimation of the occurrence probability of extreme geomagnetic storms by applying extreme value theory to an index[J]. J. Geophysi. Res.:Space Phys., 2019, 124(12):9943-9952
    [2] LIU B, ZHANG X, HE F. Tilt of the ring current during the main phases of intense geomagnetic storms[J]. Sci. China Technol. Sci., 2019, 62(5):820-828
    [3] WANG H, HE Y, LÜHR H, et al. Storm time EMIC waves observed by Swarm and Van Allen Probe satellites[J]. J. Geophys. Res.:Space Phys., 2019, 124(1):293-312
    [4] DEGELING A W, RAE I J, WATT C E J, et al. Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density[J]. J. Geophys.l Res.:Space Phys., 2018, 123(2):1086-1099
    [5] QIAO Z, YUAN Z, TU J. A simulation of the field-aligned plasma transport in the plasmaspheric plume during the 2015 St. Patrick's day storm[J]. J. Geophys. Res.:Space Phys., 2019, 124(11):8617-8628
    [6] TULASI RAM S, NILAM B, BALAN N, et al. Three different episodes of prompt equatorial electric field perturbations under steady southward IMF Bz during St. Patrick's day storm[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):10428-10443
    [7] BALAN N, ZHANG Q H, XING Z, et al. Capability of geomagnetic storm parameters to identify severe Space Weather[J]. Astrophys. J., 2019, 887(1):51
    [8] BALAN N, ZHANG Q H, SHIOKAWA K, et al. IpsDst of Dst storms applied to ionosphere-thermosphere storms and low-latitude aurora[J]. J. Geophys. Res.:Space Phys., 2019, 124(11):9552-9565
    [9] HE F, ZHANG X X, WANG W, et al. Evolution of the subauroral polarization stream oscillations during the severe geomagnetic storm on 20 November 2003[J]. Geophys. Res. Lett., 2019, 46(2):599-607
    [10] LIU B J, ZHANG X X, HE F, et al. The magnetic local time distribution of storm geomagnetic field disturbance under different conditions of solar wind and interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 2019, 124(4):2656-2667
    [11] CHENG L B, LE GM, ZHAO M X. Sun-Earth connection event of super geomagnetic storm on March 31, 2001:the importance of solar wind density[J]. Res. Astron. Astrophys., 2019, 20(3):28-43
    [12] HE F, ZHANG X X, WANG W, et al. Large-scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm[J]. J. Geophys. Res.:Space Phys., 2018, 123(4):2964-2973
    [13] YU Y, RASTÄTTER L, JORDANOVA V K, et al. Initial results from the GEM challenge on the spacecraft surface charging environment[J]. Space Weather, 2019, 17(2):299-312
    [14] ZONG Q, WANG Y, ZOU H, et al. New magnetospheric substorm injection monitor:image electron spectrometer on board a Chinese navigation IGSO satellite[J]. Space Weather, 2018, 16(2):121-125
    [15] MA X H, ZONG Q G, LIU Y. The intense substorm incidence in response to interplanetary shock impacts and influence on energetic electron fluxes at geosynchronous orbit[J]. J. Geophys. Res.:Space Phys., 2019, 124(5):3210-3221
    [16] GAO Z, SU Z, XIAO F, et al. Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere[J]. Earth Planet. Phys., 2018, 2(5):359-370
    [17] TANG B, WANG C. Large scale current systems developed from substorm onset:global MHD results[J]. Sci. China Technol. Sci., 2018, 61(3):389-396
    [18] WANG C, WANG J, LOPEZ R, et al. Determination of polar cap boundary for the substorm event of 8 March 2008[J]. Front. Phys., 2018, 6:50
    [19] SUN X, LIU W W, DUAN S. Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows[J]. Ann. Geophys., 2019, 37(3):289-297
    [20] LIU Z, ZONG Q G, HAO Y, et al. The radial propagation characteristics of the injection front:a statistical study based on BD-IES and Van Allen Probes Observations[J]. J. Geophys. Res.:Space Phys., 2018, 123(3):1927-1937
    [21] LI L, WANG Z. The effects of solar wind dynamic pressure changes on the substorm auroras and energetic electron injections on 24 August 2005[J]. J. Geophys. Res.:Space Phys., 2018, 123(1):385-399
    [22] YU Y, JORDANOVA V K, MCGRANAGHAN R M, et al. Self-consistent modeling of electron precipitation and responses in the ionosphere:application to low-altitude energization during substorms[J]. Geophys. Res. Lett., 2018, 45(13):6371-6381
    [23] GUO R, PU Z, YAO Z, et al. A three-dimensional model of spiral null pair to form ion-scale flux ropes in magnetic reconnection region observed by Cluster[J]. Phys. Plasmas, 2019, 26(11):112901
    [24] JIANG K, HUANG S, YUAN Z, et al. The role of upper hybrid waves in the magnetotail reconnection electron diffusion region[J]. Astrophys. J. Lett., 2019, 881(2):L28
    [25] HUANG S Y, JIANG K, YUAN Z G, et al. Observations of the electron jet generated by secondary reconnection in the magnetotail[J]. Astrophys. J., 2018, 862(2):144
    [26] BAI S C, SHI Q, ZONG Q G, et al. Electron dispersion and parallel electron beam observed near the separatrix[J]. J. Geophys. Res.:Space Phys., 2019, 124(9):7494-7504
    [27] DAI L. Structures of Hall fields in asymmetric magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7332-7341
    [28] ZHONG Z, TANG R, ZHOU M, et al. Evidence for secondary flux rope generated by the electron Kelvin-Helmholtz instability in a magnetic reconnection diffusion region[J]. Phys. Rev. Lett., 2018, 120(7):075101
    [29] MAN H, ZHOU M, DENG x, et al. In situ observation of magnetic reconnection between an earthward propagating flux rope and the geomagnetic field[J]. Geophys. Res. Lett., 2018, 45(17):8729-8737
    [30] YI Y, ZHOU M, SONG L, et al. On the energy conversion rate during collisionless magnetic reconnection[J]. Astrophys. J. Lett., 2019, 883(1):L22
    [31] SONG L, ZHOU M, YI Y, et al. Reconnection front associated with asymmetric magnetic reconnection:particle-in-cell simulations[J]. Astrophys. J. Lett., 2019, 881(1):L22
    [32] ZHONG Z, ZHOU M, HUANG S, et al. Observations of a kinetic-scale magnetic hole in a reconnection diffusion region[J]. Geophys. Res. Lett., 2019, 46(12):6248-6257
    [33] FU S, HUANG S, ZHOU M, et al. Tripolar electric field Structure in guide field magnetic reconnection[J]. Ann. Geophys., 2018, 36(2):373-379
    [34] ZHANG Q, LOCKWOOD M, FOSTER J C, et al. Observations of the step-like accelerating processes of cold ions in the reconnection layer at the dayside magnetopause[J]. Sci. Bull., 2018, 63(1):31-37
    [35] ZONG Q G, ZHANG H. In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause[J]. Earth Planet. Phys., 2018, 2(3):231-237
    [36] GUO Z, LIN Y, WANG x, et al. Magnetosheath reconnection before magnetopause reconnection driven by interplanetary tangential discontinuity:a Three-Dimensional global hybrid simulation with oblique interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 2018, 123(11):9169-9186
    [37] FUJIMOTO K. Multi-scale kinetic simulation of magnetic reconnection with dynamically adaptive meshes[J]. Front. Phys., 2018, 6:119
    [38] XU Y, FU H, LIU C, et al. Electron acceleration by dipolarization fronts and magnetic reconnection:a quantitative comparison[J]. Astrophys. J., 2018, 853(1):11
    [39] LIU C, FU H, CAO D, et al. Detection of magnetic nulls around reconnection fronts[J]. Astrophys. J., 2018, 860(2):128
    [40] LIU C, FU H, VAIVADS A, et al. Electron jet detected by MMS at dipolarization front[J]. Geophys. Res. Lett., 2018, 45(2):556-564
    [41] HUANG H, YU Y, DAI L, et al. Kinetic Alfvén waves excited in two-dimensional magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2018, 123(8):6655-6669
    [42] FU H S, CAO J B, CAO D, et al. Evidence of magnetic nulls in electron diffusion region[J]. Geophys. Res. Lett., 2019, 46(1):48-54
    [43] FU H S, XU Y, VAIVADS A, et al. Super-efficient electron acceleration by an isolated magnetic reconnection[J]. Astrophys. J., 2019, 870(2):L22
    [44] WANG Z, FU H S, LIU C M, et al. Electron distribution functions around a reconnection x-line resolved by the FOTE method[J]. Geophys. Res. Lett., 2019, 46(3):1195-1204
    [45] LIU Y Y, FU H S, OLSHEVSKY V, et al. SOTE:a nonlinear method for magnetic topology reconstruction in space plasmas[J]. Astrophys. J.(Suppl. Series), 2019, 244(2):31
    [46] CHEN Z, FU H, WANG T, et al. Reconstructing the flux-rope topology using the FOTE method[J]. Sci. China Technol. Sci., 2019, 62(1):144-150
    [47] LIU C M, VAIVADS A, GRAHAM D B, et al. Ion-Beam-Driven intense electrostatic solitary waves in reconnection jet[J]. Geophys. Res. Lett., 2019, 46(22):12702-12710
    [48] LIU C M, CHEN Z Z, WANG Z, et al. Evidence of radial nulls near reconnection fronts[J]. Astrophys. J., 2019, 871(2):209
    [49] WANG H, LüHR H, ZHENG Z, et al. Dependence of the equatorial electrojet on auroral activity and in situ solar insulation[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):10659-10673
    [50] WANG J, HUANG C, YASONG S G, et al. Asymmetric transport of the Earth's polar outflows by the interplanetary magnetic field[J]. Astrophys. J. Lett., 2019, 881(2):L34
    [51] LU J, ZHANG H, WANG M, et al. Magnetosphere response to the IMF turning from north to south[J]. Earth Planet. Phys., 2019, 3(1):8-16
    [52] ZHANG L, WANG C, WANG J, et al. Statistical properties of the IMF clock angle in the solar wind with northward and southward interplanetary magnetic field based on ACE observation from 1998 to 2009:dependence on the temporal scale of the solar wind[J]. Adv. Space Res., 2019, 63(10):3077-3087
    [53] NOWADA M, FEAR R C, GROCOTT A, et al. Subsidence of ionospheric flows triggered by magnetotail magnetic reconnection during transpolar arc brightening[J]. J. Geophys. Res.:Space Phys., 2018, 123(5):3398-3420
    [54] PITKäNEN T, KULLEN A, SHI Q Q, et al. Convection electric field and plasma convection in a twisted magnetotail:a THEMIS case study 1-2 January 2009[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7486-7497
    [55] SHI R, NI B, SUMMERS D, et al. Generation of electron acoustic waves in the topside ionosphere from coupling with kinetic alfven waves:a new electron energization mechanism[J]. Geophys. Res. Lett., 2018, 45(11):5299-5304
    [56] JIN Y, XING Z, ZHANG Q, et al. Polar cap patches observed by the EISCAT Svalbard Radar:a statistical study of its dependence on the solar wind and IMF conditions[J]. J. Atmos. Sol.:Terr. Phys., 2019, 192:104768
    [57] LEI Zhu, XING Zanyang, ZHANG Qinghe, et al. The global characteristic of a magnetic crochet and some statistic results[J]. Chin. J. Geophys., 2018, 61(2):437-448
    [58] PRIYADARSHI Shishir, ZHANG Qinghe, MA Yuzhang, et al. The behaviors of ionospheric scintillations around different types of nightside auroral boundaries seen at the Chinese Yellow River Station, Svalbard[J]. Front. Astron. Space Sci., 2018. DOI: 10.3389/fspas.2018.00026
    [59] XING Z, ZHANG Q, HAN D, et al. Conjugate observations of the evolution of polar cap arcs in both hemispheres[J]. J. Geophys. Res.:Space Phys., 2018, 123(3):1794-1805
    [60] MA Y Z, ZHANG Q H, XING Z Y, et al. The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow[J]. Geophys. Res. Lett., 2018, 45(16):8072-8080
    [61] MA Y Z, ZHANG Q H, XING Z Y, et al. Combined contribution of solar illumination, solar activity, and convection to ion upflow above the polar cap[J]. J. Geophys. Res.:Space Phys., 2018, 123(5):4317-4328
    [62] WANG Y, ZHANG Q H, JAYACHANDRAN P T, et al. Experimental evidence on the dependence of the standard GPS phase scintillation index on the ionospheric plasma drift around noon sector of the polar ionosphere[J]. J. Geophys. Res.:Space Phys., 2018, 123(3):2370-2378
    [63] XU J, LU J, WANG M, et al. Cusp location dependence on IMF:cluster statistical study[J]. Chin. J. Geophys. Chin. Ed., 2018, 61(9):3526-3535
    [64] BAI S, SHI Q, TIAN A, et al. Spatial distribution and semiannual variation of Cold-Dense plasma sheet[J]. J. Geophys. Res.:Space Phys., 2018, 123(1):464-472
    [65] LI H, WANG C, HE S, et al. Plausible modulation of solar wind energy flux input on global tropical cyclone activity[J]. J. Atmos. Sol.:Terr. Phys., 2019, 192:104775
    [66] WU Q, LI H, WANG C. Lightning response during Forbush Decrease in the tropics and subtropics[J]. J. Atmos. Sol.:Terr. Phys., 2019, 195:105134
    [67] LI K, WEI Y, HAALAND S, et al. Estimating the kinetic energy budget of the polar wind outflow[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7917-7929
    [68] ZHANG K, LIU J, WANG W, et al. The effects of IMF Bz periodic oscillations on thermospheric meridional winds[J]. J. Geophys. Res.:Space Phys., 2019, 124(7):5800-5815
    [69] WANG H, ZHANG K, ZHENG Z, et al. The effect of subauroral polarization streams on the mid-latitude thermospheric disturbance neutral winds:a universal time effect[J]. Ann. Geophys., 2018, 36(2):509-525
    [70] WAN X, XIONG C, WANG H, et al. A statistical study on the climatology of the Equatorial Plasma Depletions occurrence at topside ionosphere during geomagnetic disturbed periods[J]. J. Geophys. Res.:Space Phys., 2019, 124(10):8023-8038
    [71] WANG H, LUEHR H. SWARM dual satellite observation of longitudinal variation of field-aligned currents. in 42nd COSPAR Scientific Assembly[J]. Chin. J. Geophys.,2018, 62(2):447-461
    [72] CHEN Y, WU M, WANG G, et al. Carriers of the field-aligned currents in the plasma sheet boundary layer:an MMS multicase study[J]. J. Geophys.Res.:Space Phys., 2019, 124(4):2873-2886
    [73] CHEN Y, ZHANG T, WU M, et al. Small spatial-scale field-aligned currents in the plasma sheet boundary layer surveyed by magnetosphere multiscale spacecraft[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):9976-9985
    [74] LIU M, ZHANG X X, HE F, et al. A Long-Term data set of vertical ion drift velocity at high latitudes constructed from DMSP measurements[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):6090-6102
    [75] OUYANG X, ZONG Q, BORTNIK J, et al. Nightside ULF waves observed in the topside ionosphere by the DEMETER satellite[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7726-7739
    [76] LIU Z Y, ZONG Q G, ZHOU X Z, et al. ULF waves modulating and acting as mass spectrometer for dayside ionospheric outflow ions[J]. Geophys. Res. Lett., 2019, 46(15):8633-8642
    [77] ZHAO H, ZHOU x Z, LIU Y, et al. Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves[J]. Earth Planet. Phys., 2019, 3(4):305-313
    [78] YIN Z, ZOU H, YE Y, et al. Superposed epoch analysis of the energetic electron flux variations during CIRs measured by BD-IES[J]. Space Weather, 2019, 17(12):1765-1782
    [79] YU J, LI L, CUI J, et al. Ultrawideband rising-tone chorus waves observed inside the oscillating plasmapause[J]. J. Geophys. Res.:Space Phys., 2018, 123(8):6670-6678
    [80] SAMANES J, RAULIN J P, CAO J, et al. Nighttime lower ionosphere height estimation from the VLF modal interference distance[J]. J. Atmos. Sol.:Terr. Phys., 2018, 167:39-47
    [81] WEI D, YU Y, RIDLEY A J, et al. Multi-point observations and modeling of Subauroral Polarization Streams (SAPS) and Double-Peak Subauroral Ion Drifts (DSAIDs):a case study[J]. Adv. Space Res., 2019, 63(11):3522-3535
    [82] WEI D, YU Y, HE F. The magnetospheric driving source of double-peak subauroral ion drifts:double ring current pressure peaks[J]. Geophys. Res. Lett., 2019, 46(13):7079-7087
    [83] YANG J Y, DUNLOP M, LüHR H, et al. Statistical correlation analysis of field-aligned currents measured by Swarm[J]. J. Geophys. Res.:Space Phys., 2018, 123(10):8170-8184
    [84] LIU S, ZHANG J, CHEN L, et al. Examining wave vector and minimum cyclotron resonant electron energy of emic waves with magnetospheric multiscale mission[J]. Geophys. Res. Lett., 2018. 45(19):10138-10149
    [85] ZHAO H, ZHOU X Z, ZONG Q G, et al. Small-Scale aurora associated with magnetospheric flow vortices after a solar wind dynamic pressure decrease[J]. J. Geophys. Res.:Space Phys., 2019, 124(5):3303-3311
    [86] LIU Y, ZONG Q G, ZHOU X Z, et al. Understanding electron dropout echoes induced by interplanetary shocks:test particle simulations[J]. J. Geophys. Res.:Space Phys., 2019, 124(8):6759-6775
    [87] XU J, HE Z, BAKER D, et al. Characteristics of high-energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite[J]. J. Geophys. Res.:Space Phys., 2019, 124(9):7581-7591
    [88] TANG R, SUMMERS D. Dependence of whistler mode chorus wave generation on the maximum linear growth rate[J]. J. Geophys. Res.:Space Phys., 2019, 124(6):4114-4124
    [89] LOU Y, GU X, SUMMERS D, et al. Statistical distributions of dayside ECH waves observed by MMS[J]. Geophys. Res. Lett., 2018, 45(23):12730-12738
    [90] YI JUAN G X, LI Zhipeng, LIN Rentong, et al. Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models[J]. Chin. J. Geophys., 2019, 62(9):3223-3234
    [91] FU S, HE F, GU X, et al. Occurrence features of simultaneous H+-and He+-band EMIC emissions in the outer radiation belt[J]. Adv. Space Res., 2018, 61(8):2091-2098
    [92] WANG Q, FU S, NI B, et al. Bounce resonance scattering of ring current electrons by H+ band EMIC waves[J]. Phys. Plasmas, 2018, 25(8):082903
    [93] XIANG Z, TU W, NI B, et al. A statistical survey of radiation belt dropouts observed by Van Allen Probes[J]. Geophys. Res. Lett., 2018, 45(16):8035-8043
    [94] HUA M, LI W, MA Q, et al. Modeling the electron flux enhancement and butterfly pitch angle distributions on L Shells <2.5[J]. Geophys. Res. Lett., 2019, 46(20):10967-10976
    [95] XIANG Z, LI X, SELESNICK R, et al. Modeling the quasi-trapped electron fluxes from Cosmic Ray Albedo Neutron Decay (CRAND)[J]. Geophys. Res. Lett., 2019, 46(4):1919-1928
    [96] WEI C, DAI L, DUAN S, et al. Multiple satellites observation evidence:high-m poloidal ULF waves with time-varying polarization states[J]. Earth Planet. Phys., 2019, 3(3):190-203
    [97] FU S, NI B, LOU Y, et al. Resonant scattering of near-equatorially mirroring electrons by landau resonance with H+ band EMIC waves[J]. Geophys. Res. Lett., 2018, 45(20):10866-10873
    [98] HUA M, NI B, LI W, et al. Evolution of radiation belt electron pitch angle distribution due to combined scattering by plasmaspheric hiss and magnetosonic waves[J]. Geophys. Res. Lett., 2019, 46(6):3033-3042
    [99] CAO X, NI B, SUMMERS D, et al. Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution[J]. Geophys. Res. Lett., 2019, 46(2):590-598
    [100] FU S, NI B, TAO X, et al. Interactions between H+ band EMIC waves and radiation belt relativistic electrons:comparisons of test particle simulations with quasi-linear calculations[J]. Phys. Plasmas, 2019, 26(3):032901
    [101] HUANG JING N B, FU SONG, et al. Analysis of whistler waves in the Jovian magnetosphere based on data from JUNO waves Instrument[J]. Chin. J. Geophys., 2019, 62(3):817-824
    [102] HUA M, NI B, FU S, et al. Combined scattering of outer radiation belt electrons by simultaneously occurring chorus, exohiss, and magnetosonic waves[J]. Geophys. Res. Lett., 2018, 45(19):10057-10067
    [103] FU S, NI B, ZHOU R, et al. Combined scattering of radiation belt electrons caused by landau and bounce resonant interactions with magnetosonic waves[J]. Geophys. Res. Lett., 2019, 46(17-18):10313-10321
    [104] NI B, ZOU Z, FU S, et al. Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves[J]. Geophys. Res. Lett., 2018, 45(3):1228-1236
    [105] NI B, CAO X, SHPRITS Y Y, et al. Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves[J]. Geophys. Res. Lett., 2018, 45(1):21-30
    [106] HE Y, XIAO F, SU Z, et al. Generation of lower l shell dayside chorus by energetic electrons from the plasma sheet[J]. J. Geophys. Res.:Space Phys., 2018, 123(10):8109-8121
    [107] JIN Y, YANG C, HE Y, et al. Butterfly distribution of Earth's radiation belt relativistic electrons induced by dayside chorus[J]. Sci. China Technol. Sci., 2018, 61(2):212-218
    [108] DEGELING A W, RANKIN R, WANG Y, et al. Alteration of particle drift resonance dynamics near poloidal mode field line resonance structures[J]. J. Geophys. Res.:Space Phys., 2019, 124(9):7385-7401
    [109] TANG C L, XIE X J, NI B, et al. Rapid enhancements of the seed populations in the heart of the Earth's outer radiation belt:a multicase study[J]. J. Geophys. Res.:Space Phys., 2018, 123(6):4895-4907
    [110] ZHOU Q, YANG C, HE Y, et al. Excitation of highly oblique lower band and upper band chorus by a loss cone feature and temperature anisotropy distribution[J]. Geophys. Res. Lett., 2019, 46(4):1929-1936
    [111] CHEN Y, ZHOU Q, HE Y, et al. Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions[J]. Geophys. Res. Lett., 2019, 46(10):5028-5033
    [112] ZHAO W, LIU S, ZHANG S, et al. Global occurrences of auroral kilometric radiation related to suprathermal electrons in radiation belts[J]. Geophys. Res. Lett., 2019, 46(13):7230-7236
    [113] LIU S, XIA Z, CHEN L, et al. Magnetospheric multiscale observation of quasiperiodic EMIC waves associated with enhanced solar wind pressure[J]. Geophys. Res. Lett., 2019, 46(13):7096-7104
    [114] GAO Z, ZOU Z, ZUO P, et al. Low-frequency hiss-like whistler-mode waves generated by nonlinear three-wave interactions outside the plasmasphere[J]. Phys. Plasmas, 2019, 26(12):122901
    [115] YANG C, XIAO F, HE Y, et al. Storm time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus[J]. Geophys. Res. Lett., 2018, 45(5):2159-2167
    [116] LIU S, YAN Q, YANG C, et al. Quantifying extremely rapid flux enhancements of radiation belt relativistic electrons associated with radial diffusion[J]. Geophys. Res. Lett., 2018, 45(3):1262-1270
    [117] GAO Z, SU Z, XIAO F, et al. Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the Magnetosphere[J]. Geophys. Res. Lett., 2018, 45(23):12685-12693
    [118] YU X, YUAN Z. Saturation characteristics of parallel EMIC waves in the inner magnetosphere[J]. Geophys. Res. Lett., 2019, 46(14):7902-7910
    [119] YUAN Z, YU X, OUYANG Z, et al. Simultaneous trapping of electromagnetic ion cyclotron and magnetosonic waves by background plasmas[J]. J. Geophys.Res.:Space Phys., 2019, 124(3):1635-1643
    [120] YU X, YUAN Z, HUANG S, et al. Excitation of extremely low-frequency chorus emissions:the role of background plasma density[J]. Earth Planet. Phys., 2019, 3(1):1-7
    [121] YUAN Z, LIU K, YU X, et al. Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites[J]. Geophys. Res. Lett., 2018, 45(23):12694-12702
    [122] YU X, YUAN Z, LI H, et al. Response of banded whistler mode waves to the enhancement of solar wind dynamic pressure in the inner Earth's Magnetosphere[J]. Geophys. Res. Lett., 2018, 45(17):8755-8763
    [123] YU X, YUAN Z, HUANG S, et al. Excitation of O+ band EMIC waves through H+ ring velocity distributions:Van Allen Probe observations[J]. Geophys. Res. Lett., 2018, 45(3):1271-1276
    [124] YUAN C J, ZONG Q G. The efficiency of coronal mass ejection with different IMF preconditions on the production of megaelectronvolt electron content in the outer radiation belt[J]. J. Geophys. Res.:Space Phys., 2019, 124(5):3222-3235
    [125] WANG G, ZHANG T, GAO Z, et al. Propagation of EMIC waves inside the plasmasphere:a two-event study[J]. J. Geophys. Res.:Space Phys., 2019, 124(11):8396-8415
    [126] HAO Y, ZONG Q G, ZHOU X Z, et al. Global-Scale ULF waves associated with SSC accelerate magnetospheric ultrarelativistic electrons[J]. J. Geophys. Res.:Space Phys., 2019, 124(3):1525-1538
    [127] REN J, ZONG Q, ZHOU X, et al. Cold plasmaspheric electrons affected by ULF waves in the inner magnetosphere:a Van Allen Probes statistical study[J]. J. Geophys. Res.:Space Phys., 2019, 124(10):7954-7965
    [128] CHEN X, ZONG Q, ZOU H, et al. BD-IES Observation of multi-period electron flux modulation caused by localized Ultra-Low frequency waves[J]. Ann. Geophys., 2019, 38(4):801-813
    [129] YUE C, BORTNIK J, LI W, et al. Oxygen ion dynamics in the Earth's ring current:Van Allen Probes observations[J]. J. Geophys. Res.:Space Phys., 2019, 124(10):7786-7798
    [130] LI L, ZHOU X Z, OMURA Y, et al. Nonlinear drift resonance between charged particles and ultralow frequency waves:theory and observations[J]. Geophys. Res. Lett., 2018, 45(17):8773-8782
    [131] YANG M, ZHOU X Z, ZONG Q G, et al. Traveling ultralow-frequency waves and their influences over low-energy, charged particles[J]. J. Geophys. Res.:Space Phys., 2018, 123(5):3848-3858
    [132] YU J, LI L, CUI J, et al. Effect of hot He+ Ions on the electron pitch angle scattering driven by H+, He+, and O+ band EMIC waves[J]. Geophys. Res. Lett., 2019, 46(12):6306
    [133] YU J, WANG J, CUI J. Ring current proton scattering by low-frequency magnetosonic waves[J]. Earth Planet. Phys., 2019, 3(4):365-372
    [134] TAO D, LIU W, MA Y. Plasma perturbations in the coexisting environment of VLF transmitter emission, lightning strokes and seismic activity[J]. Sci. China Technol. Sci., 2018, 61(5):678-686
    [135] ZHANG D, LIU W, LI X, et al. Observations of impulsive electric fields induced by interplanetary shock[J]. Geophys. Res. Lett., 2018, 45(15):7287-7296
    [136] LV X, LIU W. Measurements of convection electric field in the inner magnetosphere[J]. Sci. China Technol. Sci., 2018, 61(12):1866-1871
    [137] YU Y, DELZANNO G L, JORDANOVA V, et al. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model[J]. J. Atmos. Sol.:Terr. Phys., 2018, 177:169-178
    [138] LI L Y, YANG S S, CAO J B, et al. Effects of solar wind plasma flow and interplanetary magnetic field on the spatial structure of earth's radiation belts[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):10332-10344
    [139] YU J, LI L Y, CUI J, et al. Effect of low-harmonic magnetosonic waves on the radiation belt electrons inside the plasmasphere[J]. J. Geophys. Res.:Space Phys., 2019, 124(5):3390-3401
    [140] ZHANG S, TIAN A, DEGELING A W, et al. Pc4-5 Poloidal ULF wave observed in the dawnside plasmaspheric plume[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):9986-9998
    [141] YUAN Z, YU X, HUANG S, et al. Cold ion heating by magnetosonic waves in a density cavity of the plasmasphere[J]. J. Geophys. Res.:Space Phys., 2018, 123(2):1242-1250
    [142] ZHANG W, FU S, GU X, et al. Electron scattering by plasmaspheric hiss in a nightside plume[J]. Geophys. Res. Lett., 2018, 45(10):4618-4627
    [143] ZHANG W, NI B, HUANG H, et al. Statistical properties of hiss in plasmaspheric plumes and associated scattering losses of radiation belt electrons[J]. Geophys. Res. Lett., 2019, 46(11):5670-5680
    [144] HE Z, CHEN L, LIU X, et al. Local generation of high-frequency plasmaspheric hiss observed by Van Allen Probes[J]. Geophys. Res. Lett., 2019, 46(3):1141-1148
    [145] HE Z, YAN Q, MA Y, et al. Precipitation loss of Van Allen radiation belt electrons by hiss waves outside the plasmasphere[J]. Astrophys. Space Sci., 2018, 363(4):66
    [146] NI B, HUANG H, ZHANG W, et al. Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss[J]. Geophys. Res. Lett., 2019, 46(8):4134-4143
    [147] YUAN Z, OUYANG Z, YU X, et al. Global distribution of proton rings and associated magnetosonic wave instability in the inner magnetosphere[J]. Geophys. Res. Lett., 2018, 45(19):10160-10166
    [148] REN J, ZONG Q, MIYOSHI Y, et al. A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere:Van Allen probes observation[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):5334-5343
    [149] ZONG Q G, LEONOVICH A, KOZLOV D. Resonant alfven waves excited by plasma tube/shock front interaction[J]. Phys. Plasmas, 2018, 25(12):122904
  • 加载中
计量
  • 文章访问数:  780
  • HTML全文浏览量:  68
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回