留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of Research on Origins of Life in China

ZHAO Yufen HUA Yuejin ZHANG Hongyu HE Yujian ZHU Ting LIU Yan WU Li

ZHAO Yufen, HUA Yuejin, ZHANG Hongyu, HE Yujian, ZHU Ting, LIU Yan, WU Li. Progress of Research on Origins of Life in China[J]. 空间科学学报, 2020, 40(5): 937-945. doi: 10.11728/cjss2020.05.937
引用本文: ZHAO Yufen, HUA Yuejin, ZHANG Hongyu, HE Yujian, ZHU Ting, LIU Yan, WU Li. Progress of Research on Origins of Life in China[J]. 空间科学学报, 2020, 40(5): 937-945. doi: 10.11728/cjss2020.05.937
ZHAO Yufen, HUA Yuejin, ZHANG Hongyu, HE Yujian, ZHU Ting, LIU Yan, WU Li. Progress of Research on Origins of Life in China[J]. Journal of Space Science, 2020, 40(5): 937-945. doi: 10.11728/cjss2020.05.937
Citation: ZHAO Yufen, HUA Yuejin, ZHANG Hongyu, HE Yujian, ZHU Ting, LIU Yan, WU Li. Progress of Research on Origins of Life in China[J]. Journal of Space Science, 2020, 40(5): 937-945. doi: 10.11728/cjss2020.05.937

Progress of Research on Origins of Life in China

doi: 10.11728/cjss2020.05.937
详细信息
    作者简介:

    ZHAO Yufen,E-mail:stacyliu@xmu.edu.cn

  • 中图分类号: P149

Progress of Research on Origins of Life in China

More Information
    Author Bio:

    ZHAO Yufen,E-mail:stacyliu@xmu.edu.cn

  • 摘要: The development of Chinese space science and technology plays a great role in promoting the researches in the field of the origin of life. With the multidisciplinary cooperation, there are fruitful achievements in this research field obtained over the past two years. This report summarizes the major progress of the basic researches about the origin of life in China during 2018-2020.

     

  • [1] ZHAO Y F, LIY Y, GAO X, XU P X. Phosphorus Chemistry:The Role of Phosphorus in Prebiotic Chemistry[M]. Berlin:De Gruyter, 2019
    [2] YING J X, FU S S, LI X,et al. A plausible model correlates prebiotic peptide synthesis with the primordial genetic code[J]. Chem. Commun., 2018, 54:8598-8601
    [3] WANG T, ZHANG P B, HU G B, et al. Mixed anhydrides of nucleotides and amino acids give dipeptides:a model system for studying the origin of the genetic code[J] Chemistryselect, 2018, 3:7849-7855
    [4] LIU Y, LI Y B, GAO X, et al. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics[J]. Amino Acids, 2018, 50:69-77
    [5] SHU W Y, YU Y F, CHEN S, et al. Selective formation of ser-his dipeptide via phosphorus activation[J]. Origins Life Evol.:B, 2018, 48:213-222
    [6] TIAN T, CHU X Y, YANG Y, et al. Phosphates as energy sources to expand metabolic networks[J]. Basel Life, 2019, 9:43
    [7] XIAO Y, LIU Q, TANG X, et al. Mirror-image thymidine discriminates against incorporation of deoxyribonucleotide triphosphate into DNA and repairs itself by DNA polymerases[J]. Bioconjug. Chem., 2017, 28:2125-2134
    [8] LIU Q, CHEN L, ZHANG Z, et al. pH-dependent enantioselectivity of D-amino acid oxidase in aqueous solution[J]. Sci. Reports, 2017, 7:2994
    [9] LIU Q J, HE Y J, WU L, et al. Reactive oxygen species accumulation induced by D-amino acid in Saccharomyces cerevisiae[J]. J. Univ. Chin. Acad. Sci., 2018, 35:473-480
    [10] KAN Y, ZHANG Z K, YANG, K H, et al. Influence of D-amino acids in beer on formation of uric acid[J]. Food Technol. Biotech., 2019, 57:418-425
    [11] WANG Z M, XU W L, LIU L, et al. A synthetic molecular system capable of mirror-image genetic replication and transcription[J]. Nat. Chem., 2016, 8:698-704
    [12] JIANG W J, ZHANG B C, FAN C Y, et al. Mirror-image polymerase chain reaction[J]. Cell Discov., 2017, 3:17037
    [13] WANG M, JIANG W J, LIU X Y, et al. Mirror-image gene transcription and reverse transcription[J]. Chem-US, 2019, 5:848-857
    [14] LIU X Y, ZHU T F. Sequencing mirror-image DNA chemically[J]. Cell Chem. Biol., 2018, 25:1151-1156
    [15] LING J J, FAN C Y, QIN H, et al. Mirror-image 5S ribonucleoprotein complexes[J]. Angew. Chem. Int. Edit., 2020, 59:3724-3731
    [16] HUA Y J, NARUMI I, GAN G J, et al. PprI:a general switch responsible for extreme radioresistance of deinococcus radiodurans[J]. Biochem. Bioph. Res. Co., 2003, 306:354-360
    [17] LU H M, GAO G J, XU G Z, et al. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage[J]. Mol. Cell Proteom., 2009, 8:481-494
    [18] LU H Z, WANG L Y, LI S J, et al. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO[J]. Nucl. Acids Res., 2019, 47:9925-9933
    [19] ZHAO Y, LU M H, ZHANG H, et al. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J[J]. Nucl. Acids Res., 2015, 43:5550-5559
    [20] LI S J, CAI J L, LU H Z, et al. N-4-Cytosine DNA Methylation Is Involved in the Maintenance of Genomic Stability in Deinococcus radiodurans[J]. Front. Microbiol., 2019, 10:1905
    [21] HUA Y W, WANG Y G, WANG L Y. Polypeptide Having Protease Activity and Methods for Increasing Its Activity Thereof:US 10, 316, 310 B2[P]. 2019-06-11
  • 加载中
计量
  • 文章访问数:  284
  • HTML全文浏览量:  2
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-21
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回