[1] |
ZHAO Y F, LIY Y, GAO X, XU P X. Phosphorus Chemistry:The Role of Phosphorus in Prebiotic Chemistry[M]. Berlin:De Gruyter, 2019
|
[2] |
YING J X, FU S S, LI X,et al. A plausible model correlates prebiotic peptide synthesis with the primordial genetic code[J]. Chem. Commun., 2018, 54:8598-8601
|
[3] |
WANG T, ZHANG P B, HU G B, et al. Mixed anhydrides of nucleotides and amino acids give dipeptides:a model system for studying the origin of the genetic code[J] Chemistryselect, 2018, 3:7849-7855
|
[4] |
LIU Y, LI Y B, GAO X, et al. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics[J]. Amino Acids, 2018, 50:69-77
|
[5] |
SHU W Y, YU Y F, CHEN S, et al. Selective formation of ser-his dipeptide via phosphorus activation[J]. Origins Life Evol.:B, 2018, 48:213-222
|
[6] |
TIAN T, CHU X Y, YANG Y, et al. Phosphates as energy sources to expand metabolic networks[J]. Basel Life, 2019, 9:43
|
[7] |
XIAO Y, LIU Q, TANG X, et al. Mirror-image thymidine discriminates against incorporation of deoxyribonucleotide triphosphate into DNA and repairs itself by DNA polymerases[J]. Bioconjug. Chem., 2017, 28:2125-2134
|
[8] |
LIU Q, CHEN L, ZHANG Z, et al. pH-dependent enantioselectivity of D-amino acid oxidase in aqueous solution[J]. Sci. Reports, 2017, 7:2994
|
[9] |
LIU Q J, HE Y J, WU L, et al. Reactive oxygen species accumulation induced by D-amino acid in Saccharomyces cerevisiae[J]. J. Univ. Chin. Acad. Sci., 2018, 35:473-480
|
[10] |
KAN Y, ZHANG Z K, YANG, K H, et al. Influence of D-amino acids in beer on formation of uric acid[J]. Food Technol. Biotech., 2019, 57:418-425
|
[11] |
WANG Z M, XU W L, LIU L, et al. A synthetic molecular system capable of mirror-image genetic replication and transcription[J]. Nat. Chem., 2016, 8:698-704
|
[12] |
JIANG W J, ZHANG B C, FAN C Y, et al. Mirror-image polymerase chain reaction[J]. Cell Discov., 2017, 3:17037
|
[13] |
WANG M, JIANG W J, LIU X Y, et al. Mirror-image gene transcription and reverse transcription[J]. Chem-US, 2019, 5:848-857
|
[14] |
LIU X Y, ZHU T F. Sequencing mirror-image DNA chemically[J]. Cell Chem. Biol., 2018, 25:1151-1156
|
[15] |
LING J J, FAN C Y, QIN H, et al. Mirror-image 5S ribonucleoprotein complexes[J]. Angew. Chem. Int. Edit., 2020, 59:3724-3731
|
[16] |
HUA Y J, NARUMI I, GAN G J, et al. PprI:a general switch responsible for extreme radioresistance of deinococcus radiodurans[J]. Biochem. Bioph. Res. Co., 2003, 306:354-360
|
[17] |
LU H M, GAO G J, XU G Z, et al. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage[J]. Mol. Cell Proteom., 2009, 8:481-494
|
[18] |
LU H Z, WANG L Y, LI S J, et al. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO[J]. Nucl. Acids Res., 2019, 47:9925-9933
|
[19] |
ZHAO Y, LU M H, ZHANG H, et al. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J[J]. Nucl. Acids Res., 2015, 43:5550-5559
|
[20] |
LI S J, CAI J L, LU H Z, et al. N-4-Cytosine DNA Methylation Is Involved in the Maintenance of Genomic Stability in Deinococcus radiodurans[J]. Front. Microbiol., 2019, 10:1905
|
[21] |
HUA Y W, WANG Y G, WANG L Y. Polypeptide Having Protease Activity and Methods for Increasing Its Activity Thereof:US 10, 316, 310 B2[P]. 2019-06-11
|