留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球磁层亚暴统计分析

李世友 谢蓉 肖扬

李世友, 谢蓉, 肖扬. 地球磁层亚暴统计分析[J]. 空间科学学报, 2020, 40(6): 1000-1006. doi: 10.11728/cjss2020.06.1000
引用本文: 李世友, 谢蓉, 肖扬. 地球磁层亚暴统计分析[J]. 空间科学学报, 2020, 40(6): 1000-1006. doi: 10.11728/cjss2020.06.1000
LI Shiyou, XIE Rong, XIAO Yang. Statistical Study on the Geomagnetic Substorm[J]. Chinese Journal of Space Science, 2020, 40(6): 1000-1006. doi: 10.11728/cjss2020.06.1000
Citation: LI Shiyou, XIE Rong, XIAO Yang. Statistical Study on the Geomagnetic Substorm[J]. Chinese Journal of Space Science, 2020, 40(6): 1000-1006. doi: 10.11728/cjss2020.06.1000

地球磁层亚暴统计分析

doi: 10.11728/cjss2020.06.1000
基金项目: 

湖南省教育厅优秀青年项目(18B572),湖南省自然科学基金面上项目(2020JJ4451)和国家自然科学基金青年基金项目(41304132)共同资助

详细信息
    作者简介:

    李世友,E-mail:toneylab@163.com

  • 中图分类号: P353

Statistical Study on the Geomagnetic Substorm

  • 摘要: 利用AL和AE指数对第24个太阳活动周发生的亚暴事件进行统计分析.主要统计了关于磁层亚暴的强度,亚暴初值与恢复值的关系,亚暴持续时间,亚暴恢复相与增长相(包括膨胀相)持续时间的关系等.统计结果表明:在第24个太阳活动周中2008-2016年发生的亚暴事件大部分比较剧烈,其峰值大都在200~1200nT;初值和恢复值大都在30~100nT,并且事件占比符合正态分布;大部分亚暴都能恢复到亚暴初值60nT以内,并且差值越小,事件的占比越大.大部分亚暴的持续时间较长,在100~400min之间,其中增长相(包括膨胀相)持续时间均在120min以内,并且持续时间越长,其事件占比越小;大部分亚暴事件的恢复相持续时间在60~300min之间,并且呈现出正态分布特征.绝大多数亚暴事件的恢复相持续时间为增长相持续时间的10倍以下,其中约一半亚暴事件的恢复相持续时间为增长相持续时间的1~4倍.这说明亚暴的能量聚集速度约为能量释放速度的1~4倍.

     

  • [1] LASSEN K, SHARBER J R, WINNINGHAM J D. The development of auroral and geomagnetic substorm activity after a southward turning of the interplanetary magnetic field following several hours of magnetic calm[J]. J. Geophys. Res., 1977, 82(32):5031-5050
    [2] MCPHERRON R L. Magnetospheric substorms[J]. Rev. Geophys. Space Phys., 1979, 17:657-681
    [3] BAKER D N, PULKKINEN T I, ANGELOPOULOS V, et al. Neutral line model of substorms: past results and present view[J]. J. Geophys. Res., 1996, 101(A6):12975
    [4] BAUMJOHANN W, KAMIDE Y, NAKAMURA R. Substorms, storms, and the near-earth tail[J]. J. Geomag. Geoelectric., 1996, 48(2):177-185
    [5] MENG C I, KAN LIOU. Substorm timings and timescales: a new aspect[J]. Space Sci. Rev., 2004, 113:41
    [6] BLAGOVESHCHENSKⅡ D V, ROGOV D D, ULICH T. Variations in the horizontal correlation radius of the ionosphere during a magnetospheric substorm[J]. Geomag. Aeronomy, 2013, 53(2):166-176
    [7] BAKER D N, JAYNES A N, TURNER D L, et al. A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: magnetospheric multiscale and vanallen probes study of substorm particle injection[J]. Geophys. Res. Lett., 2016, 43(12):6051-6059
    [8] PU Zuyin, FU Suiyan, LI Yaoting, et al. A near earth triggering model for the magnetospheric substorm expansion phase[J]. Chin. J. Space Sci., 1994, 01:30-38
    [9] LUI A T Y. Current disruption in the Earth's magnetosphere: observations and models[J]. J. Geophys. Res. Space Phys., 1996, 101(A6):12975-13010
    [10] EASTWOOD J P, NAKAMURA R, TURC L, et al. The scientific foundations of forecasting magnetospheric space weather[J]. Space Sci. Rev., 2017, 212(3-4):1221-1252
    [11] LI H, WANG C, PENG Z. Solar wind impacts on growth phase duration and substorm intensity: a statistical approach[J]. J. Geophys. Res. Space Physics, 2013, 118:4270-4278
    [12] CHU X, MCPHERRON P L, HSU T S, et al. Solar cycle dependence of substorm occurrence and duration: implications for onset[J]. J. Geophys. Res. Space Phys., 2015, 120:2808-2818
    [13] LIOU K, SOTIRELIS T, RICHARDSON I. Substorm occurrence and intensity associated with three types of solar wind structure[J]. J. Geophys. Res.: Space Phys., 2018, 123:485-496
    [14] NEWELL P T, GJERLOEV J W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power[J]. J. Geophys. Res., 2011, 116:A12211
    [15] NAKAMURA R, BAKER D N, FAIRFIELD D H, et al. Plasma flow and magnetic field characteristics near the midtail neutral sheet[J]. J. Geophys. Res. Space Phys., 1994, 99(A12):23591-23601
    [16] HSU T S, MCPHERRON R L. Occurrence frequency of substorm field and plasma signatures observed near-earth by ISEE-1/2[R]//Proceedings of Third International Conference on Substorms (ICS-3). Versailles: European Space Agency, 1996
    [17] HSU T S, MCPHERRON R L. The Main Onset of a Magnetospheric Substorm[R]//Proceedings of Fourth International Conference on Substorms (ICS-4). Tokyo: Terra Science, 1998
    [18] MILAN S E, GROCOTT A, HUBERT B. A superposed epoch analysis of auroral evolution during substorms: local time of onset region[J]. J. Geophys. Res. Space Phys., 2010, 115(A5):A00I04
    [19] SUN W J, SLAVIN J A, FU S, et al. MESSENGER observations of magnetospheric substorm activity in Mercuryüs near magnetotail[J]. Geophys. Res. Lett., 2015, 42(10):3692-3699
    [20] KISSINGER J, MCPHERRON R L, HSU T S, et al. Necessity of substorm expansions in the initiation of steady magnetospheric convection[J]. Geophys. Res. Lett., 2012, 39(15):51-60
    [21] LI Kejun, FENG Wen, LIANG Hongfei. The abnormal 24th solar cycle-The first complete solar cycle of the new millennium[J]. Sci. Sin.: Phys. Mech. Astron., 2010, 40(10):1293-1301
    [22] LUI A T Y. What deter mines the intensity of magnetospheric substorms[J]. J. Atmosph. Terr. Phys., 1993, 55(8):1123-1136
    [23] HSU T S, MCPHERRON R L. A statistical study of the relation of Pi2 and plasma flows in the tail[J]. J. Geophys. Res., 2007, 112:A05209
    [24] HSU T S, AND MCPHERRON R L. A statistical analysis of substorm associated tail activity[J]. Adv. Space Res., 2012, 50(10):1317-1343
    [25] HSU T S, MCPHERRON R L, ANGELOPOULOS V, et al. A statistical analysis of the association between fast plasma flows and Pi2 pulsations[J]. J. Geophys. Res., 2012, 117:A11221
  • 加载中
计量
  • 文章访问数:  630
  • HTML全文浏览量:  41
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2020-08-19
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回