留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温射流抑制空间液氢储罐温度分层的数值研究

郭斌 赵建福 李凯 胡文瑞

郭斌, 赵建福, 李凯, 胡文瑞. 低温射流抑制空间液氢储罐温度分层的数值研究[J]. 空间科学学报, 2020, 40(6): 1052-1065. doi: 10.11728/cjss2020.06.1052
引用本文: 郭斌, 赵建福, 李凯, 胡文瑞. 低温射流抑制空间液氢储罐温度分层的数值研究[J]. 空间科学学报, 2020, 40(6): 1052-1065. doi: 10.11728/cjss2020.06.1052
GUO Bin, ZHAO Jianfu, LI Kai, HU Wenrui. Destratification in Hydrogen Propellant Tank in Space by Jet Injection[J]. Journal of Space Science, 2020, 40(6): 1052-1065. doi: 10.11728/cjss2020.06.1052
Citation: GUO Bin, ZHAO Jianfu, LI Kai, HU Wenrui. Destratification in Hydrogen Propellant Tank in Space by Jet Injection[J]. Journal of Space Science, 2020, 40(6): 1052-1065. doi: 10.11728/cjss2020.06.1052

低温射流抑制空间液氢储罐温度分层的数值研究

doi: 10.11728/cjss2020.06.1052
基金项目: 

中国科学院前沿科学重点研究项目(QYZDY-SSWJSC040)和国家自然科学基金项目(11672311)共同资助

详细信息
    作者简介:

    李凯,E-mail:likai@imech.ac.cn

  • 中图分类号: V524

Destratification in Hydrogen Propellant Tank in Space by Jet Injection

  • 摘要: 液氢是一种常用的沸点低、易蒸发的空间低温推进剂.空间微重力环境中浮力对流被极大减弱甚至完全抑制,当推进剂储罐壁面存在局部漏热时,储罐内部气液两相流会出现环绕漏热源的温度分层现象,引起局部过热沸腾,导致储罐内部压力急剧增大,危害系统结构安全.利用低温射流抑制温度分层现象是一种有效手段.低温流体通过设置在储罐内部的射流喷嘴与储罐内部的流体混合,消减局部高温,实现温度的均匀化.本文采用全充满的二维缩比储罐模型,对微重力条件下液氢储罐内局部漏热引起的温度分层现象进行数值模拟,分析低温射流条件对于消除微重力条件下液氢储罐内部温度分层效果的影响.

     

  • [1] HASTINGS L J, PLACHTA D W, SALERNO L, et al. An overview of NASA efforts on zero boiloff storage of cryogenic propellants[J]. Cryogenics, 2001, 41(11-12):833-839
    [2] POTH L J, HOOK J R V. Control of the thermodynamic state of space-stored cryogens by jet mixing[J]. J. Spacecraft Rockets, 1972, 9(5):332-336
    [3] AUDELOTT J C. Axial Jet Mixing of Ethanol in Spherical Containers during Weightlessness[R]. NASA TP-1487, 1979
    [4] LIN C S, HASAN M M, VANDRESAR N T. Experimental investigation of jet-induced mixing of a large liquid hydrogen storage tank[C]//6th Joint Thermophysics and Heat Transfer Conference. Colorado Springs: AIAA, 1994:2079
    [5] PANZARELLA C, KASSEMI M. Simulations of zero boil-off in a cryogenic storage tank[C]//41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003:10-12
    [6] RAHMAN M, MUKKA S. Computation of fluid circulation in a cryogenic storage vessel[C]//2nd International Energy Conversion Engineering Conference. Florida: AIAA, 2004
    [7] HO S H, RAHMAN M M. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe-pump system[J]. Cryogenics, 2008, 48(1/2):31-41
    [8] HO S H, RAHMAN M M. Nozzle injection displacement mixing in a zero boil-off hydrogen storage tank[J]. Int. J. Hydrogen Energy, 2008, 33(2):878-888
    [9] HO S H, RAHMAN M M. Forced convective mixing in a zero boil-off cryogenic storage tank[J]. Int. J. Hydrogen Energy, 2012, 37(13):10196-10209
    [10] WANG X J, YUAN X Z, XU S H, et al. Numerical study of zero boil-off storage system with heat pipe and pump-nozzle unit[J]. HVAC&R Res., 2014, 20(3):320-327
    [11] LIU Y W, LIU X, YUAN X Z, et al. Optimizing design of a new zero boil off cryogenic storage tank in microgravity[J]. Appl. Energy, 2016, 162:1678-1686
    [12] LIU Y W, WU R J, YANG P, et al. Parameter study of the injection configuration in a zero boil-off hydrogen storage tank using orthogonal test design[J]. Appl. Therm. Eng., 2016, 109:283-294
    [13] MA Yuan, SUN Peijie, LI Peng, et al. Numerical investigation on performance of spraying pressure control technique for liquid hydrogen tank at microgravity[J]. Vacuum Cryogenics, 2018, 209(1):25-31(马原, 孙培杰, 李鹏, 等. 液氢贮箱微重力喷射降压特性数值模拟研究[J]. 真空与低温, 2018, 209(1):25-31)
    [14] ZUO Z Q, SUN P J, JIANG W B, et al. Thermal stratification suppression in reduced or zero boil-off hydrogen tank by self-spinning spray bar[J]. Int. J. Hydrogen Energy, 2019, 44(36):20158-20172
    [15] ABID R. Assessment of two-equation turbulence models for predicting transitional flows[J]. Int. J. Eng. Sci., 1993, 31(6):831-840
  • 加载中
计量
  • 文章访问数:  260
  • HTML全文浏览量:  29
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-26
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回