留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ACE飞船观测的银河宇宙线与太阳风变化的统计研究

郭孝城 曹世豪 熊明

郭孝城, 曹世豪, 熊明. 基于ACE飞船观测的银河宇宙线与太阳风变化的统计研究[J]. 空间科学学报, 2020, 40(6): 969-979. doi: 10.11728/cjss2020.06.969
引用本文: 郭孝城, 曹世豪, 熊明. 基于ACE飞船观测的银河宇宙线与太阳风变化的统计研究[J]. 空间科学学报, 2020, 40(6): 969-979. doi: 10.11728/cjss2020.06.969
GUO Xiaocheng, CAO Shihao, XIONG Ming. Statistical Investigation on the Galactic Cosmic Rays and Solar Wind Variation Based on ACE Observations[J]. Journal of Space Science, 2020, 40(6): 969-979. doi: 10.11728/cjss2020.06.969
Citation: GUO Xiaocheng, CAO Shihao, XIONG Ming. Statistical Investigation on the Galactic Cosmic Rays and Solar Wind Variation Based on ACE Observations[J]. Journal of Space Science, 2020, 40(6): 969-979. doi: 10.11728/cjss2020.06.969

基于ACE飞船观测的银河宇宙线与太阳风变化的统计研究

doi: 10.11728/cjss2020.06.969
基金项目: 

中国科学院空间科学战略性先导科技专项(XDB41000000,XDA15052500,XDA1701030),国家自然科学基金项目(41874171,41674146,41574159),中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-JSC028),民用航天技术预先研究项目(D030202,D020301)共同资助

详细信息
    作者简介:

    郭孝城,E-mail:xcguo@swl.ac.cn

  • 中图分类号: P352

Statistical Investigation on the Galactic Cosmic Rays and Solar Wind Variation Based on ACE Observations

  • 摘要: 基于ACE飞船的资料,通过时序迭加方法统计分析了最近两个太阳活动极小年时期(2007.0-2009.0和2016.5-2019.0年)的宇宙线计数与太阳风参数的关系.结果表明,宇宙线的计数受太阳风共转流相互作用区的强烈影响,宇宙线计数变化与快慢太阳风流界面的位置密切相关,例如流界面的穿越通常伴随着宇宙线计数的下降.分析表明,第一时段的具有“雪犁”效应的宇宙线计数下降对应于流界面附近的扩散系数急剧下降,而第二时段的非“雪犁”效应的计数下降可能是由穿越流界面后的扩散系数增大引起的.日球层电流片也与宇宙线计数变化存在一定的相关性,宇宙线粒子在日球层电流片附近存在一定程度的堆积.太阳风对宇宙线的作用机制表明,宇宙线的漂移和扩散效应决定了其在1AU附近的分布变化.

     

  • [1] ACKERMANN M, AJELLO M, ALLAFORT A, et al. Detection of the characteristic pion-decay signature in supernova remnants[J]. Science, 2013, 339:807-811
    [2] CUMMINGS A C, STONE E C, HEIKKILA B C, et al. Galactic cosmic rays in the local interstellar medium: voyager 1 observations and model results[J]. Astrophys. J., 2016, 831:18
    [3] GUO X, FLORINSKI V. Galactic cosmic-ray modulation near heliopause[J]. Astrophys. J., 2014, 793:18
    [4] SCHLICKEISER R. Cosmic Ray Astrophysics[M]. Berlin: Springer, 2002
    [5] PARKER E N. The passage of energetic charged particles through interplanetary space[J]. Planet. Space Sci., 1965, 13(1):9
    [6] JOKIPⅡ J R, KOPRIVA D A. Effects of particle drift on the transport of cosmic rays. Ⅲ. Numerical models of galactic cosmic-ray modulation[J]. Astrophys. J., 1979, 234:384-392
    [7] KOTA J, JOKIPⅡ J R. The role of corotating interaction regions in cosmic-ray modulation[J]. Geophys. Res. Lett., 1991, 18:1979-1800
    [8] JOKIPⅡ J R, THOMAS B. Effects of drift on the transport of cosmic rays. IV. modulation by a wavy interplanetary current sheet[J]. Astrophys. J., 1981, 243:1115-1122
    [9] ALANIA M V, MODZELEWSKA R, WAWRZYNCZAK A. On the relationship of the 27-day variations of the solar wind velocity and galactic cosmic ray intensity in minimum epoch of solar activity[J]. Sol. Phys., 2011, 270:629-641
    [10] BURLAGA L F, MCDONALD F B, NESS N F, et al. Interplanetary flow systems associated with cosmic ray modulation in 1977-1980[J]. J. Geophys. Res., 1984, 89(A8):6579
    [11] POTGIETER M S, LE ROUX J A. The long-term heliospheric modulation of galactic cosmic rays according to a time-dependent drift model with merged interaction regions[J]. Astrophys. J., 1994, 423:817
    [12] LANGNER U W, POTGIETER M S. Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium[J]. Ann. Geophys., 2004, 22:3063-3072
    [13] KOTA J, JOKIPⅡ J R. The role of corotating interaction regions in cosmic-ray modulation[J]. Geophys. Res. Lett., 1991, 18:1979-1800
    [14] KOTA J, JOKIPⅡ J R. Corotating variations of cosmic rays near the south heliospheric pole[J]. Science, 1995, 268:1024-1025
    [15] RICHARDSON I G. Energetic particles and corotating interaction regions in the solar wind[J]. Space Sci. Rev., 2004, 111(3):267
    [16] LESKE R A, CUMMINGS A C, MEWALDT R A, et al. Anomalous and galactic cosmic rays at 1AU during the cycle 23/24 solar minimum[J]. Space Sci. Rev., 2013, 176(1/2/3/4):253
    [17] RICHARDSON I G. The relationship between recurring cosmic ray depressions and corotating solar wind streams at ≤1AU: IMP8 and Helios1 and 2 anticoincidence guard rate observations[J]. J. Geophys. Res., 1996, 101(A6):13483
    [18] GUO X, FLORINSKI V. Galactic cosmic-ray intensity modulation by corotating interaction region stream interfaces at 1AU[J]. Astrophys. J., 2016, 826:65
    [19] GHANBARI K, FLORINSKI V, GUO X, et al. Galactic cosmic rays modulation in the vicinity of corotating interaction regions: observations during the last two solar minina[J]. Astrophys. J., 2019, 882:54
    [20] BADRUDDIN R S Y, YADAV N R. Intensity variation of cosmic rays near the heliospheric current sheet[J]. Planet. Space Sci., 1985, 33(2):191
    [21] EI-BORIE M A. Cosmic-ray intensities near the heliospheric current sheet throughout three solar activity cycles[J]. J. Phys. G: Nuclear Part. Phys., 2001, 27(4):773
    [22] THOMAS S R, OWENS M J, LOCKWOOD M, et al. Galactic cosmic ray modulation near the heliospheric current sheet[J]. Sol. Phys., 2014, 289(7):2653
    [23] OKAZAKI Y, FUSHISHITA A, NARUMI T, et al. Drift effects and the cosmic ray density gradient in a solar rotation period: first observation with the Global Muon Detector Network (GMDN)[J]. Astrophys. J., 2008, 681(1):693
    [24] STONE E C, FRANDSEN A M, MEWALDT R A, et al. The advanced composition explorer[J]. Space Sci. Rev., 1998, 86(1/4):1
    [25] ABRAMENKO V, YURCHYSHYN V, LINKER J, et al. Low-latitude coronal holes at the minimum of the 23rd solar cycle[J]. Astrophys. J., 2010, 712:813
    [26] MCCOMAS D J, EBERT R W, ELLIOTT H A, et al. Weaker solar wind from the polar coronal holes and the whole Sun[J]. Geophys. Res. Lett., 2008, 35:L18103
    [27] JIAN L, RUSSELL C T, LUHMANN J G, et al. Properties of stream interactions at one au during 1995-2004[J]. Sol. Phys., 2006, 239(1/2):337
    [28] JIAN L, RUSSELL C T, LUHMANN J G. Comparing solar minimum 23/24 with historical solar wind records at 1AU[J]. Sol. Phys., 2011, 274:321
    [29] JIAN L K, MACNEICE P J, TAKTAKISHVILI A, et al. Validation for solar wind prediction at Earth: comparison of coronal and heliospheric models installed at the CCMC[J]. Space Weather, 2015, 13:316-338
    [30] GIACALONE J, JOKIPⅡ J R. The transport of cosmic rays across a turbulent magnetic field[J]. Astrophys. J., 1999, 520:204-214
    [31] MATTHAEUS W H, QIN G, BIEBER J W, et al. Nonlinear collisionless perpendicular diffusion of charged particles[J]. Astrophys. J., 2003, 590(1):L53
    [32] POTGIETER M S. Solar modulation of cosmic rays[J]. Liv. Rev. Sol. Phys., 2013, 10:3
    [33] POTGIETER M S, VOS E E, BOEZIO M, et al. Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009[J]. Sol. Phys., 2014, 289:391
    [34] GIACALONE J. Cosmic-ray transport coeffcients[J]. Space Sci. Rev., 1998, 83:351
    [35] JOKIPⅡ J R, KOPRIVA D A. Effects of particle drift on the transport of cosmic rays. Ⅲ. numerical models of galactic cosmic-ray modulation[J]. Astrophys. J., 1979, 234:384
    [36] STONE E C, CUMMINGS A C, MCDONALD F B, et al. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions[J]. Science, 2013, 341:150
    [37] FLORINSKI V, JOKIPⅡ J R, ALOUANI-BIBI F, et al. Energetic particle anisotropies at the heliospheric boundary[J]. Astrophys. J., 2013, 776:L37
    [38] KOTA J, JOKIPⅡ J R. Effects of drift on the transport of cosmic rays. VI. A three-dimensional model including diffusion[J]. Astrophys. J., 1983, 265:573
    [39] NEWKIRK G, LOCKWOOD J A. Cosmic ray gradients in the heliosphere and particle drifts[J]. Geophys. Res. Lett., 1981, 8(6):619
    [40] PARKER E N. The passage of energetic charged particles through interplanetary space[J]. Planet. Space Sci., 1965, 13:9
  • 加载中
计量
  • 文章访问数:  456
  • HTML全文浏览量:  8
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-09-25
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回