留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维MHD背景场下太阳高能粒子平均自由程模拟

王尚洁 魏稳稳 刘佑生 朱雨及 沈芳

王尚洁, 魏稳稳, 刘佑生, 朱雨及, 沈芳. 三维MHD背景场下太阳高能粒子平均自由程模拟[J]. 空间科学学报, 2020, 40(6): 980-989. doi: 10.11728/cjss2020.06.980
引用本文: 王尚洁, 魏稳稳, 刘佑生, 朱雨及, 沈芳. 三维MHD背景场下太阳高能粒子平均自由程模拟[J]. 空间科学学报, 2020, 40(6): 980-989. doi: 10.11728/cjss2020.06.980
WANG Shangjie, WEI Wenwen, LIU Yousheng, ZHU Yuji, SHEN Fang. Simulation of Mean Free Path of Solar Energetic Particles in Three-dimensional MHD Background[J]. Chinese Journal of Space Science, 2020, 40(6): 980-989. doi: 10.11728/cjss2020.06.980
Citation: WANG Shangjie, WEI Wenwen, LIU Yousheng, ZHU Yuji, SHEN Fang. Simulation of Mean Free Path of Solar Energetic Particles in Three-dimensional MHD Background[J]. Chinese Journal of Space Science, 2020, 40(6): 980-989. doi: 10.11728/cjss2020.06.980

三维MHD背景场下太阳高能粒子平均自由程模拟

doi: 10.11728/cjss2020.06.980
基金项目: 

国家自然科学基金项目资助(41774184,41874202)

详细信息
    作者简介:

    王尚洁,E-mail:estherwang427@163.com

    通讯作者:

    沈芳,E-mail:fshen@spaceweather.ac.cn

  • 中图分类号: P353

Simulation of Mean Free Path of Solar Energetic Particles in Three-dimensional MHD Background

  • 摘要: 太阳高能粒子(SEP)的平均自由程是研究SEP传播的重要参数,由SEP的物理性质和太阳风物理性质决定.使用MHD-SEP模型对三维MHD背景场下的平均自由程进行了探讨,利用该模型具有可提供接近物理真实的太阳风背景场的优势,对SEP的平均自由程进行了定性分析.分别对太阳活动高年和低年选取2个卡林顿周进行模拟,定性分析其空间变化,并研究平均自由程与径向太阳风速度的相关性.结果表明:该方法得到的平均自由程空间分布与以往研究得到的关于平均自由程的结论相吻合,可以用来定性确立平行平均自由程;该模型可以反映不同事件中平行平均自由程分布的不同特征;表现了平均自由程与径向太阳风速度有很好的负相关关系.结果可为未来缓变SEP平均自由程研究作参考.

     

  • [1] BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306
    [2] PALMER I D. Transport coefficients of low-energy cosmic rays in interplanetary space[J]. Rev. Geophys. Space Phys., 1982, 20:335-351
    [3] JOKIPⅡ J R. Cosmic-ray propagation. I. charged particles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
    [4] HASSELMANN K, WIBBERENZ G. Scattering of charged particles by random electromagetidc field[J]. Z. Geophys., 1968, 34:353
    [5] FISK L A, GOLDSTEIN M L, KLIMAS A J, et al. The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays[J]. Astrophys. J., 1974, 190(2):417-428
    [6] KUNSTMANN J E. A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field[J]. Astrophys. J., 1979, 229:812-820
    [7] LEE M A, VOELK H J. Hydromagnetic waves and cosmic-ray diffusion theory[J]. Astrophys. J., 1975, 198. DOI: 10.1086/153625
    [8] JONES F C, BIRMINGHAM T J. KAISER T B. Computer simulation of the velocity diffusion of cosmic rays[J]. Phys. Fluid., 1978, 21:347
    [9] SCHLICKEISER R, JAEKEL U, DUNG R. Interplanetary transport of solar cosmic rays and dissipation of Alfvén waves[J]. Astron. Astrophys., 1991, 242:L5-L8
    [10] BEECK J, WIBBERENZ G. Pitch angle distribution of solar energetic particles and the local scattering properties of the interplanetary medium[J]. Astrophys. J., 1986, 311:437-450
    [11] KENNEL C F, SCARF F L, CORONITI F V, et al. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock[J]. J. Geophys. Res. Space Phys., 1984, 89(A7):5419-5435
    [12] DENSKAT K U, BEINROTH H J, NEUBAUER F M. Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the-5th Hz to 470Hz from HELIOS-observations during solar minimum conditions[J]. J. Geophys.: Zeitschrift füur Geophys., 1983, 54(1):60-67
    [13] SCHLICKEISER R J. On the interplanetary transport of solar cosmic rays[J]. J. Geophys. Res., 1988, 93:2725
    [14] BIEBER J W, MATTHAEUS W H. Cosmic ray pitch angle scattering in dynamical magnetic turbulence[R]//Proceedings of the 22nd International Cosmic Ray Conference. Volume. 3, Contributed Papers, SH Sessions. Dublin The Institute for Advanced Studies. 1991:248
    [15] SCHLICKEISER R, ACHATZ U. Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. theory[J]. J. Plasma Phys., 1993, 49(1):63-77
    [16] GOLDSTEIN M L. A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence[J]. Astrophys. J., 1976, 204(3):900-919
    [17] DRüOGE W. Solar particle transport in a dynamical quasi-linear theory[J]. Astrophys. J., 2003, 589(2):1027-1039
    [18] BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306
    [19] HASSELMANN K, WIBBERENZ G Z. Comparison of particle-field interaction theory with proton diffusion coefficients[J]. Astrophys. J., 1970, 162:1049
    [20] EARL J A. The diffusive idealization of charged-particle transport in random magnetic fields[J]. Astrophys. J., 1974, 193(1):417-428
    [21] HALL D E, STURROCK P A. Diffusion, scattering, and acceleration of particles by stochastic electromagnetic fields[J]. Phys. Fluid., 1967, 10(12):2620-2628
    [22] HE Hongqing. Study on Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Field[D]. Beijing: University of Chinese Academy of Sciences
    [23] HE H Q, QIN G. A simple analytical method to determine saolar energetic particles' mean free path[J]. Astrophys. J., 2011, 730(1):46
    [24] HE H Q, WAN W. A direct method to determin the parallel mean free path of solar energetic particles with adiabatic focusing[J]. Astrophys. J., 2012, 747(38):7
    [25] HE H Q, WAN W. The dependence of the parallel and perpendicular mean free paths on the rigidity of the solar energetic particles: theoretical model versus observations[J]. Astron. Astrophys., 2013, 557:A57
    [26] HE H Q, SCHLICKEISER R. Modification of the parallel scattering mean free path of cosmic rays in the presence of adiabatic focusing[J]. Astrophys. J., 2014, 792(2):85
    [27] SHALCHI A, ŠKODA T, TAUTZ R C, et al. Analytical description of nonlinear cosmic ray scattering: isotropic and quasilinear regimes of pitch-angle diffusion[J]. Astron. Astrophys., 2009, 507:589-597
    [28] YANG Zicai. Interplanetary Solar Wind Background on the Numerical Simulation of Three-dimensional Magnetohydrodynamic (MHD)[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences
    [29] WEI Wenwen. Effects of the Solar Wind Background on the Numerical Simulation of the Solar Energetic Particle (SEP) Transportation[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences
    [30] FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the sun to earth by a sip-cese MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300
    [31] ZHANG M, QIN G, RASSOUL H. Propagation of solar energetic particles in Three-Dimension interplanetary magnetic fields[J]. Astrophys. J., 2009, 692:109-132
    [32] QIN G, ZHANG M, DWYER J R. Effect of adiabatic cooling on the fitted parallel mean free path of solar energetic particles[J]. J. Geophys. Res., 2006, 111(A8):DOI: 10.1029/2005JA011512
    [33] QIN G, SHALCHI A. Pitch-Angle diffusion coefficients of charged particles from computer simulations[J]. Astrophys. J., 2009, 707:61-66
    [34] MORFILL G, RICHTER A K, SCHOLER M. Average properties of cosmic ray diffusion in solar wind streams[J]. J. Geophys. Res., 1979, 84(A4):1505-1513
  • 加载中
计量
  • 文章访问数:  529
  • HTML全文浏览量:  34
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2020-08-12
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回