[1] |
BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306
|
[2] |
PALMER I D. Transport coefficients of low-energy cosmic rays in interplanetary space[J]. Rev. Geophys. Space Phys., 1982, 20:335-351
|
[3] |
JOKIPⅡ J R. Cosmic-ray propagation. I. charged particles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
|
[4] |
HASSELMANN K, WIBBERENZ G. Scattering of charged particles by random electromagetidc field[J]. Z. Geophys., 1968, 34:353
|
[5] |
FISK L A, GOLDSTEIN M L, KLIMAS A J, et al. The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays[J]. Astrophys. J., 1974, 190(2):417-428
|
[6] |
KUNSTMANN J E. A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field[J]. Astrophys. J., 1979, 229:812-820
|
[7] |
LEE M A, VOELK H J. Hydromagnetic waves and cosmic-ray diffusion theory[J]. Astrophys. J., 1975, 198. DOI: 10.1086/153625
|
[8] |
JONES F C, BIRMINGHAM T J. KAISER T B. Computer simulation of the velocity diffusion of cosmic rays[J]. Phys. Fluid., 1978, 21:347
|
[9] |
SCHLICKEISER R, JAEKEL U, DUNG R. Interplanetary transport of solar cosmic rays and dissipation of Alfvén waves[J]. Astron. Astrophys., 1991, 242:L5-L8
|
[10] |
BEECK J, WIBBERENZ G. Pitch angle distribution of solar energetic particles and the local scattering properties of the interplanetary medium[J]. Astrophys. J., 1986, 311:437-450
|
[11] |
KENNEL C F, SCARF F L, CORONITI F V, et al. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock[J]. J. Geophys. Res. Space Phys., 1984, 89(A7):5419-5435
|
[12] |
DENSKAT K U, BEINROTH H J, NEUBAUER F M. Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the-5th Hz to 470Hz from HELIOS-observations during solar minimum conditions[J]. J. Geophys.: Zeitschrift füur Geophys., 1983, 54(1):60-67
|
[13] |
SCHLICKEISER R J. On the interplanetary transport of solar cosmic rays[J]. J. Geophys. Res., 1988, 93:2725
|
[14] |
BIEBER J W, MATTHAEUS W H. Cosmic ray pitch angle scattering in dynamical magnetic turbulence[R]//Proceedings of the 22nd International Cosmic Ray Conference. Volume. 3, Contributed Papers, SH Sessions. Dublin The Institute for Advanced Studies. 1991:248
|
[15] |
SCHLICKEISER R, ACHATZ U. Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. theory[J]. J. Plasma Phys., 1993, 49(1):63-77
|
[16] |
GOLDSTEIN M L. A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence[J]. Astrophys. J., 1976, 204(3):900-919
|
[17] |
DRüOGE W. Solar particle transport in a dynamical quasi-linear theory[J]. Astrophys. J., 2003, 589(2):1027-1039
|
[18] |
BIEBER JOHN W, MATTHAEUS WILLIAM H, SMITH CHARLES W. Proton and electron mean free paths: the palmer consensus revisited[J]. Astrophys. J., 1994, 420:294-306
|
[19] |
HASSELMANN K, WIBBERENZ G Z. Comparison of particle-field interaction theory with proton diffusion coefficients[J]. Astrophys. J., 1970, 162:1049
|
[20] |
EARL J A. The diffusive idealization of charged-particle transport in random magnetic fields[J]. Astrophys. J., 1974, 193(1):417-428
|
[21] |
HALL D E, STURROCK P A. Diffusion, scattering, and acceleration of particles by stochastic electromagnetic fields[J]. Phys. Fluid., 1967, 10(12):2620-2628
|
[22] |
HE Hongqing. Study on Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Field[D]. Beijing: University of Chinese Academy of Sciences
|
[23] |
HE H Q, QIN G. A simple analytical method to determine saolar energetic particles' mean free path[J]. Astrophys. J., 2011, 730(1):46
|
[24] |
HE H Q, WAN W. A direct method to determin the parallel mean free path of solar energetic particles with adiabatic focusing[J]. Astrophys. J., 2012, 747(38):7
|
[25] |
HE H Q, WAN W. The dependence of the parallel and perpendicular mean free paths on the rigidity of the solar energetic particles: theoretical model versus observations[J]. Astron. Astrophys., 2013, 557:A57
|
[26] |
HE H Q, SCHLICKEISER R. Modification of the parallel scattering mean free path of cosmic rays in the presence of adiabatic focusing[J]. Astrophys. J., 2014, 792(2):85
|
[27] |
SHALCHI A, ŠKODA T, TAUTZ R C, et al. Analytical description of nonlinear cosmic ray scattering: isotropic and quasilinear regimes of pitch-angle diffusion[J]. Astron. Astrophys., 2009, 507:589-597
|
[28] |
YANG Zicai. Interplanetary Solar Wind Background on the Numerical Simulation of Three-dimensional Magnetohydrodynamic (MHD)[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences
|
[29] |
WEI Wenwen. Effects of the Solar Wind Background on the Numerical Simulation of the Solar Energetic Particle (SEP) Transportation[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences
|
[30] |
FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the sun to earth by a sip-cese MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300
|
[31] |
ZHANG M, QIN G, RASSOUL H. Propagation of solar energetic particles in Three-Dimension interplanetary magnetic fields[J]. Astrophys. J., 2009, 692:109-132
|
[32] |
QIN G, ZHANG M, DWYER J R. Effect of adiabatic cooling on the fitted parallel mean free path of solar energetic particles[J]. J. Geophys. Res., 2006, 111(A8):DOI: 10.1029/2005JA011512
|
[33] |
QIN G, SHALCHI A. Pitch-Angle diffusion coefficients of charged particles from computer simulations[J]. Astrophys. J., 2009, 707:61-66
|
[34] |
MORFILL G, RICHTER A K, SCHOLER M. Average properties of cosmic ray diffusion in solar wind streams[J]. J. Geophys. Res., 1979, 84(A4):1505-1513
|