留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弓激波模型的对比

周悦 吕建永 王明 袁换只

周悦, 吕建永, 王明, 袁换只. 弓激波模型的对比[J]. 空间科学学报, 2020, 40(6): 990-999. doi: 10.11728/cjss2020.06.990
引用本文: 周悦, 吕建永, 王明, 袁换只. 弓激波模型的对比[J]. 空间科学学报, 2020, 40(6): 990-999. doi: 10.11728/cjss2020.06.990
ZHOU Yue, LÜ Jianyong, WANG Ming, YUAN Huanzhi. Comparative Study of Bow Shock Models[J]. Chinese Journal of Space Science, 2020, 40(6): 990-999. doi: 10.11728/cjss2020.06.990
Citation: ZHOU Yue, LÜ Jianyong, WANG Ming, YUAN Huanzhi. Comparative Study of Bow Shock Models[J]. Chinese Journal of Space Science, 2020, 40(6): 990-999. doi: 10.11728/cjss2020.06.990

弓激波模型的对比

doi: 10.11728/cjss2020.06.990
基金项目: 

国家自然科学基金项目(U1631107,41574158,41604141),双创团队项目(2017),江苏省自然科学基金项目(BK20160952)和江苏省普通高校研究生科研创新计划项目(KYLX16_0950)共同资助

详细信息
    作者简介:

    周悦,E-mail:zhouyue_nuist@163.com

  • 中图分类号: P353

Comparative Study of Bow Shock Models

  • 摘要: 使用Cluster卫星的弓激波穿越数据,比较了Peredo弓激波模型、Merka弓激波模型、Chao弓激波模型和Lu弓激波模型在极端太阳风条件、偶极倾角较大和平静太阳风条件下的预测精度.结果表明:Peredo模型在极端太阳风条件和平静太阳风条件下的预测误差均较大;Merka模型在极端太阳风条件下的预测误差较大;Chao模型可以较为准确地描述平静太阳风条件下的弓激波位型,但不能准确描述偶极倾角较大时的弓激波位型;Lu模型可以同时准确描述极端太阳风条件和平静太阳风条件下的弓激波位型.

     

  • [1] FU S, ZHAO L L, ZANK G P, et al. An ACE/CRIS-observation-based Galactic Cosmic Rays heavy nuclei spectra model Ⅱ[J]. Sci. China Phys. Mech. Astron., 2020, 63:219511.DOI: 10.1007/s11433-019-9423-3
    [2] 161.DOI: 10.1016/0032-0633(79)90135-1
    [3] CHAPMAN J F, CAIRNS I H. Three-dimensional modeling of Earth's bow shock: shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108 (A5):1174.DOI: 10.1029/2002JA009569
    [4] CHAPMAN J F, CAIRNS I H, LYON J G, et al. MHD simulations of Earth's bow shock: interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215.DOI: 10.1029/2003JA010235
    [5] VERIGIN MI, KOTOVA G A, SLAVIN J, et al. Analysis of the 3-D shape of the terrestrial bow shock by Interball/MAGION 4 observations[J]. Adv. Space Res., 2001, 28(6):857-862.DOI: 10.1016/S0273-1177(01)00502-6
    [6] WANG M, LU J Y, YUAN H Z, et al. The dipole tilt control of the bow shock location for southward IMF: MHD results[J]. Planet. Space Sci., 2015, 106(2015):99-107.DOI: 10.1016/j.pss.2014.12.002
    [7] LU J Y, YUAN H Z, WANG M, et al. Dipole tilt control of bow shock location and flaring angle[J]. Sci. China Earth Sci., 2017, 60(1):198-206.DOI: 10.1007/s11430-015-0268-8
    [8] FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J.Geophys. Res., 1971, 76(28):6700-6716
    [9] PEREDO M, SLAVIN J A, MAZUR E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100(A5):7907-7916. DOI: 10.1029/94JA02545
    [10] MERKA J, SZABO A, NAROCKT W, et al. A comparison of IMP 8 observed bow shock positions with model predictions[J]. J. Geophys. Res., 2003, 108(A2): 1077.DOI: 10.1029/2002JA009384
    [11] SAFRANKOVA J, NEMECEK Z, BORAK M. Bow shock position: observations and models[J]. Interball ISTP Prog., 1999, 537:187-201
    [12] MERKA J, SZABO A, NAROCK T W, et al. Three dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 2005, 110:A04202.DOI: 10.1029/2004JA010944
    [13] CHAO J K, WU D J, LIN C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[C]//Space Weather Study Using Multipoint Techniques. Hawaii: COSPAR, 2002:127-134
    [14] CAIRNS I H, LYON J G. MHD simulations of Earth's bow shock at low Mach numbers: standoff distances[J]. J. Geophys. Res., 1995, 100(A9):17173-17180.DOI:10.1029/ 95JA00993
    [15] NĚMEČEK Z, ŠÁFRANKOVÁ J. The Earth's bow shock and magnetopause position as a result of the solar wind-magnetosphere interaction[J]. J. Atmos. Terr. Phys., 1991, 53:1049
    [16] VERIGIN M, KOTOVA G, SZABO A, et al. WIND observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planets Space, 2001, 53(10):1001-1009.DOI: 10.1186/BF03351697
    [17] DMITRIEV A V, CHAO J K, WU D J. Comparative study of bow shock models using Wind and Geotailobservations[J]. J. Geophys. Res., 2003, 108(A12):1464-1482.DOI: 10.1029/2003JA010027
    [18] RUSSELL C T, PETRINEC S M. Comment on "Towards an MHD theory for the standoff distance of Earth's bow shock" by I. H. Cairns and C. L. Grabbe[J]. Geophys. Res. Lett., 1996, 23(3):311-314.DOI: 10.1029/95GL03506
    [19] TATRALLYAYM, ERDOS G, NEMETH Z, et al. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbance[J]. Ann. Geophys., 2012, 30:1675-1692
    [20] LU J Y, ZHOU Y, MA X, et al. Earth's bow shock: a new three-dimensional asymmetric model with dipole tilt effects[J]. J. Geophys. Res.: Space Phys., 2019, 124.DOI:10.1029/ 2018JA026144
    [21] ROMANOV S A, SMIRNOV V N, VAISBERG O L. Interaction of the solar wind with Venusp[J]. Cosmic Res., Engl. Trans., 1978, 16:603
  • 加载中
计量
  • 文章访问数:  555
  • HTML全文浏览量:  37
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-10-20
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回