[1] |
FU S, ZHAO L L, ZANK G P, et al. An ACE/CRIS-observation-based Galactic Cosmic Rays heavy nuclei spectra model Ⅱ[J]. Sci. China Phys. Mech. Astron., 2020, 63:219511.DOI: 10.1007/s11433-019-9423-3
|
[2] |
161.DOI: 10.1016/0032-0633(79)90135-1
|
[3] |
CHAPMAN J F, CAIRNS I H. Three-dimensional modeling of Earth's bow shock: shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108 (A5):1174.DOI: 10.1029/2002JA009569
|
[4] |
CHAPMAN J F, CAIRNS I H, LYON J G, et al. MHD simulations of Earth's bow shock: interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215.DOI: 10.1029/2003JA010235
|
[5] |
VERIGIN MI, KOTOVA G A, SLAVIN J, et al. Analysis of the 3-D shape of the terrestrial bow shock by Interball/MAGION 4 observations[J]. Adv. Space Res., 2001, 28(6):857-862.DOI: 10.1016/S0273-1177(01)00502-6
|
[6] |
WANG M, LU J Y, YUAN H Z, et al. The dipole tilt control of the bow shock location for southward IMF: MHD results[J]. Planet. Space Sci., 2015, 106(2015):99-107.DOI: 10.1016/j.pss.2014.12.002
|
[7] |
LU J Y, YUAN H Z, WANG M, et al. Dipole tilt control of bow shock location and flaring angle[J]. Sci. China Earth Sci., 2017, 60(1):198-206.DOI: 10.1007/s11430-015-0268-8
|
[8] |
FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J.Geophys. Res., 1971, 76(28):6700-6716
|
[9] |
PEREDO M, SLAVIN J A, MAZUR E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100(A5):7907-7916. DOI: 10.1029/94JA02545
|
[10] |
MERKA J, SZABO A, NAROCKT W, et al. A comparison of IMP 8 observed bow shock positions with model predictions[J]. J. Geophys. Res., 2003, 108(A2): 1077.DOI: 10.1029/2002JA009384
|
[11] |
SAFRANKOVA J, NEMECEK Z, BORAK M. Bow shock position: observations and models[J]. Interball ISTP Prog., 1999, 537:187-201
|
[12] |
MERKA J, SZABO A, NAROCK T W, et al. Three dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res., 2005, 110:A04202.DOI: 10.1029/2004JA010944
|
[13] |
CHAO J K, WU D J, LIN C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[C]//Space Weather Study Using Multipoint Techniques. Hawaii: COSPAR, 2002:127-134
|
[14] |
CAIRNS I H, LYON J G. MHD simulations of Earth's bow shock at low Mach numbers: standoff distances[J]. J. Geophys. Res., 1995, 100(A9):17173-17180.DOI:10.1029/ 95JA00993
|
[15] |
NĚMEČEK Z, ŠÁFRANKOVÁ J. The Earth's bow shock and magnetopause position as a result of the solar wind-magnetosphere interaction[J]. J. Atmos. Terr. Phys., 1991, 53:1049
|
[16] |
VERIGIN M, KOTOVA G, SZABO A, et al. WIND observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planets Space, 2001, 53(10):1001-1009.DOI: 10.1186/BF03351697
|
[17] |
DMITRIEV A V, CHAO J K, WU D J. Comparative study of bow shock models using Wind and Geotailobservations[J]. J. Geophys. Res., 2003, 108(A12):1464-1482.DOI: 10.1029/2003JA010027
|
[18] |
RUSSELL C T, PETRINEC S M. Comment on "Towards an MHD theory for the standoff distance of Earth's bow shock" by I. H. Cairns and C. L. Grabbe[J]. Geophys. Res. Lett., 1996, 23(3):311-314.DOI: 10.1029/95GL03506
|
[19] |
TATRALLYAYM, ERDOS G, NEMETH Z, et al. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbance[J]. Ann. Geophys., 2012, 30:1675-1692
|
[20] |
LU J Y, ZHOU Y, MA X, et al. Earth's bow shock: a new three-dimensional asymmetric model with dipole tilt effects[J]. J. Geophys. Res.: Space Phys., 2019, 124.DOI:10.1029/ 2018JA026144
|
[21] |
ROMANOV S A, SMIRNOV V N, VAISBERG O L. Interaction of the solar wind with Venusp[J]. Cosmic Res., Engl. Trans., 1978, 16:603
|