[1] |
COUNCIL N R. Earth System Science:A Closer View[R]. Washington DC:The National Academies Press, 1988:210
|
[2] |
LAWLER A. NASA mission gets down to Earth[J]. Science, 1995, 269(5228):1208-1210
|
[3] |
BORGEAUD M, DRINKWATER M, SILVESTRIN P, et al. Status of the ESA Earth explorer missions and the new ESA Earth observation science strategy[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan:IEEE, 2015:4189-4192
|
[4] |
SIMON P, HOLLINGSWORTH A, CARLI B, et al. The Changing Earth:New scientific challnges for ESA's Living Planet Programme[R]. Paris:European Space Agency, 2006:83
|
[5] |
LEEMANS R, ASRAR G, BUSALACCHI A, et al. Developing a common strategy for integrative global environmental change research and outreach:the Earth System Science Partnership (ESSP)[J]. Curr. Opin. Environ. Sust., 2009, 1(1):4-13
|
[6] |
LEFEVRE R J, PEARLMAN J, WIENER T F. The role of science and technology in GEOSS[C]//2010 IEEE Aerospace Conference. Big Sky:IEEE, 2010:1-7
|
[7] |
VAN DER HEL S. New science for global sustainability——The institutionalisation of knowledge co-production in future Earth[J]. Environ. Sci. Policy, 2016, 61:165-175
|
[8] |
LU Naimeng, GU Songyan. Review and prospect on the development of meteorological satellites[J]. J. Remote Sens., 2016, 20:832-841(卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报, 2016, 20:832-841)
|
[9] |
JIANG Xingwei, LIN Mingsen, ZHANG Youguang. Progress and prospect of chinese ocean satellites[J]. J. Remote Sens., 2016, 20:1185-1198(蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20:1185-1198)
|
[10] |
LI Li. CBERS-04A satellite mission[J]. Satellite Appl., 2020, 1:62(李莉. 中巴地球资源卫星04A星[J]. 卫星应用, 2020, 1:62)
|
[11] |
WANG Qiao, LIU Sihan. Research and implementation of national environmental remote sensing monitoring system[J]. J. Remote Sens., 2016, 20:1161-1169(王桥, 刘思含. 国家环境遥感监测体系研究与实现[J]. 遥感学报, 2016, 20:1161-1169)
|
[12] |
TANG Xinming, WANG Hongyan, ZHU Xiaoyong. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geod. Cartograph. Sin., 2017, 46:1482-1491(唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017, 46:1482-1491)
|
[13] |
TONG Xudong. Development of China high-resolution Earth observation system[J]. J. Remote Sens., 2016, 20:775-780(童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016, 20:775-780)
|
[14] |
HAN Zhen, JIN Yaqiu, YUN Caixing. Spatial and temporal distributions of suspended sediment contents in the yangtze river estuary using the CMODIS image data from China's SZ-3 spacecraft[J]. J. Remote Sens., 2006, 3:381-386(韩震, 金亚秋, 恽才兴. 神舟三号CMODIS数据获取长江口悬浮泥沙含量的时空分布[J]. 遥感学报, 2006, 3:381-386)
|
[15] |
ZHANG Dehai, JIANG Jingshan, ZHENG Zhenpan, et al. SZ-4 Main Payload-Multi-Mode microwave remote sensor[J]. Remote Sens. Technol. Appl., 2005, 20:74-80(张德海, 姜景山, 郑震藩, 等. 神舟4号主载荷elax——elax多模态微波遥感器[J]. 遥感技术与应用, 2005, 20:74-80)
|
[16] |
LI Hua, DU Yongming, LIU Qinhuo, et al. Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect[J]. J. Remote Sens., 2014, 18:133-143(历华, 杜永明, 柳钦火, 等. 天宫一号数据地表温度反演及其在城市热岛效应中的应用[J]. 遥感学报, 2014, 18:133-143)
|
[17] |
PANG Y, ZHANG L H, LI Z Y, et al. Forest change detection using Tiangong-1 and Landsat 7 Earth observation data[J]. J. Remote Sens., 2016, 18:121-125(庞勇, 张连华, 李增元, 等. 利用天宫一号和Landsat7对地观测数据的森林变化检测[J]. 遥感学报, 2016, 18:121-125)
|
[18] |
REN Haigen, LI Shengyang. Research progress of Tiangong-2 Earth observation applications[J]. Manned Spaceflight, 2019, 25:825-833(任海根, 李盛阳. 天宫二号对地观测应用研究进展[J]. 载人航天, 2019, 25:825-833)
|
[19] |
LIU Y, WANG J, YAO L, et al. The TanSat mission:preliminary global observations[J]. Sci. Bull., 2018, 63(18):1200-1207
|
[20] |
YANG D, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Adv. Atmos. Sci., 2021, 38(1):8-11
|
[21] |
DU S S, LIU L Y, LIU X J, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Sci. Bull., 2018, 63(22):1502-1512
|
[22] |
HAUSER D, DONG X, AOUF L, et al. Overview of the CFOSAT mission[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016:5789-5792
|
[23] |
TISON C, AMIOT T, BOURBIER J, et al. Directional wave spectrum estimation by SWIM instrument on CFOSAT[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009:V-312-V-315
|
[24] |
LIN W M, DONG X L. Design and optimization of a Ku-band rotating, range-gated fanbeam scatterometer[J]. Int. J. Remote Sens., 2011, 32(8):2151-2171
|
[25] |
WANG Lanwei, HU Zhe, SHEN Xuhui, et al. Data processing methods and procedures of CSES satellite[J]. J. Remote Sens., 2018, 22:39-55(王兰炜, 胡哲, 申旭辉, 等. 电磁监测试验卫星(张衡一号)数据处理方法和流程[J]. 遥感学报, 2018, 22:39-55)
|
[26] |
DU S S, LIU L Y, LIU X J, et al. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) onboard the first Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1):specifications and prospects[J]. Sensors, 2020, 20(3):815
|
[27] |
CHEN J M, MENGES C H, LEBLANC S G. Global mapping of foliage clumping index using multi-angular satellite data[J]. Remote Sens. Environ., 2005, 97(4):447-457
|
[28] |
WANG Y Y, LI G C, DING J H, et al. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height[J]. Remote Sens. Environ., 2016, 174:24-43
|
[29] |
LIANG S L, WANG D D, HE T, et al. Remote sensing of Earth's energy budget:synthesis and review[J]. Int. J. Digital Earth, 2019, 12(7):1-44
|
[30] |
KOPP G. 5.02-Earth's incoming energy:the total solar irradiance[M]//Comprehensive Remote Sensing. Oxford:Elsevier, 2018:32-66
|
[31] |
GUEYMARD C A. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations[J]. Sol. Energy, 2018, 168:2-9
|
[32] |
STEPHENS G L, O'BRIEN D, WEBSTER P J, et al. The albedo of Earth[J]. Rev. Geophys., 2015, 53(1):141-163
|
[33] |
WIELICKI B A, WONG T, LOEB N, et al. Changes in Earth's albedo measured by satellite[J]. Science, 2005, 308(5723):825
|
[34] |
LOEB N G, SU W, DOELLING D R, et al. Comprehensive remote sensing[M]//Earth's Top-of-Atmosphere Radiation Budget. Oxford:Elsevier, 2018:67-84
|
[35] |
LOEB N G, KATO S, LOUKACHINE K, et al. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth's radiant energy system instrument on the terra satellite. part i:methodology[J]. J. Atmos. Ocean. Technol., 2005, 22(4):338-351
|
[36] |
WANG D D, LIANG S L. Estimating top-of-atmosphere daily reflected shortwave radiation flux over land from MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(7). DOI: 10.1109/TGRS.2017.2686599
|
[37] |
LOEB N, THORSEN T, NORRIS J, et al. Changes in Earth's energy budget during and after the "Pause" in global warming:an observational perspective[J]. Climate, 2018, 6(3):62
|
[38] |
KIM B Y, LEE K T, JEE J B, et al. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data[J]. Remote Sens. Environ., 2018, 204:498-508
|
[39] |
LIANG S, WANG D D, HE T, et al. Remote sensing of Earth's energy budget:synthesis and review[J]. Int. J. Digital Earth, 2019, 12(7):1-44
|
[39] |
ZHOU Y, S. LIANG D, WANG Z, et al. Evaluation of six outgoing longwave radiation satellite products[J]. J. Geophys. Res., 2019(press)
|
[40] |
SUSSKIND J, MOLNAR G, IREDELL L, et al. Interannual variability of outgoing longwave radiation as observed by AIRS and CERES[J]. J. Geophys. Res. Atmos., 2012, 117(D23). DOI: 10.1029/2012JD017997
|
[41] |
SU W Y, LOEB N G, LIANG L S, et al. The El Nio-Southern Oscillation effect on tropical outgoing longwave radiation:a daytime versus nighttime perspective[J]. J. Geophys. Res., 2017, 122(15). DOI: 10.1002/2017JD027002
|
[42] |
HANSEN J, SATO M, KHARECHA P, et al. Earth's energy imbalance and implications[J]. Atmos. Chem. Phys., 2011, 11(9). DOI: 10.5194/acp-11-13421-2011
|
[43] |
TRENBERTH K E, FASULLO J T, BALMASEDA M A. Earth's energy imbalance[J]. J. Climate, 2014, 27(9):3129-3144
|
[44] |
LOEB N G, LYMAN J M, JOHNSON G C, et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty[J]. Nature Geosci., 2012, 5(2):110-113
|
[45] |
RESPLANDY L, KEELING R F, EDDEBBAR Y, et al. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition[J]. Nature, 2018, 563(7729):105-108
|
[46] |
SCHMETZ J, PILI P, TJEMKES S, et al. Supplement to an introduction to Meteosat Second Generation (MSG)[J]. Bull. Amer. Meteorol. Soc., 2002, 83(7):991-991
|
[47] |
PINKER R T, LI X, MENG W, et al. Toward improved satellite estimates of short-wave radiative fluxes-Focus on cloud detection over snow:2. results[J]. J. Geophys. Res. Atmos., 2007, 112(D9). DOI: 10.1029/2005JD006698
|
[48] |
LU N, LIU R G, YUAN L J, et al. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China[J]. J. Geophys. Res.:Atmos., 2010, 115(D18). DOI: 10.1029/2009JD013457
|
[49] |
HUANG G H, MA M G, LIANG S L, et al. A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data[J]. J. Geophys. Res.:Atmos., 2011, 116(D22). DOI: 10.1029/2011JD016120
|
[50] |
LASZLO I, CIREN P, LIU H Q, et al. Remote sensing of aerosol and radiation from geostationary satellites[J]. Adv. Space Res., 2008, 41(11):1882-1893
|
[51] |
LIANG S L, ZHENG T, LIU R G, et al. Estimation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data[J]. J. Geophys. Res.:Atmos., 2006, 111(D15). DOI: 10.1029/2005JD006730
|
[52] |
LIANG S L, ZHENG T, WANG D D, et al. Mapping high-resolution incident photosynthetically active radiation over land from polar-orbiting and geostationary satellite data[J]. Photogramm. Eng. Remote Sens., 2007, 73(10):1085-1089
|
[53] |
LIANG S, WANG K, ZHANG X, et al. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2010, 3(3):225-240
|
[54] |
OREOPOULOS L, MLAWER E, DELAMERE J, et al. The continual intercomparison of radiation codes:results from phaseI[J]. J. Geophys. Res.:Atmos., 2012, 117 (D6).DOI: 10.1029/2011JD016821
|
[55] |
KATO S, ROSE F G, RUTAN D A, et al. Surface irradiances of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product[J]. J. Clim., 2018, 31(11). DOI: 10.1175/JCLI-D-17-0523.1
|
[56] |
ZHANG Y C, ROSSOW W B, LACIS A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:refinements of the radiative transfer model and the input data[J]. J. Geophys. Res.:Atmos., 2004, 109(D19). DOI: 10.1029/2003JD004457
|
[57] |
PINKER R T, TARPLEY J D, LASZLO I, et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project[J]. J. Geophys. Res.:Atmos., 2003, 108(D22). DOI: 10.1029/2002JD003301
|
[58] |
DENEKE H M, FEIJT A J, ROEBELING R A. Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties[J]. Remote Sens. Environ., 2008, 112(6):3131-3141
|
[59] |
LIANG S, ZHAO X, LIU S, et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies[J]. Int. J. Digital Earth, 2013, 6(1):5-33
|
[60] |
ZHANG Y, HE T, LIANG S L, et al. Estimation of all-sky instantaneous surface incident shortwave radiation from Moderate Resolution Imaging Spectroradiometer data using optimization method[J]. Remote Sen. Environ., 2018, 209:468-479
|
[61] |
QIN J, CHEN Z Q, YANG K, et al. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products[J]. Appl. Energy, 2011, 88 (7):2480-2489
|
[62] |
WILD M. Enlightening global dimming and brightening[J]. Bull. Amer. Meteorol. Soc., 2012, 93(1):27-37
|
[63] |
WILD M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming[J]. Wiley Interdiscipl. Rev. Clim. Change, 2016, 7(1):91-107
|
[64] |
BOUSSETTA S, BALSAMO G, DUTRA E, et al. Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction[J]. Remote Sens. Environ., 2015, 163:111-126
|
[65] |
QU Y, LIANG S L, LIU Q, et al. Mapping surface broadband albedo from satellite observations:a review of literatures on algorithms and products[J]. Remote Sens., 2015, 7(1):990-1020
|
[66] |
LIANG S, FANG H, CHEN M. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(11):2490-2498
|
[67] |
SCHAAF C B, GAO F, STRAHLER A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sens. Environ., 2002, 83(1/2):135-148
|
[68] |
LIANG S L, MEMBER S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery[J]. Geosci. Remote Sens. IEEE Trans., 2003, 41(1):136-145
|
[69] |
LIANG S L, STROEVE J, BOX J E. Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS):the improved direct retrieval algorithm and validation with Greenland in situ measurement[J]. J. Geophys. Res. Atmos., 2005, 110(D10). DOI: 10.1029/2004JD005493
|
[70] |
WANG K C, DICKINSON R E. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses[J]. Rev. Geophys., 2013, 51(2):150-185
|
[71] |
HE T, LIANG S L, WANG D D, et al. Land surface albedo estimation from chinese HJ satellite data based on the direct estimation approach[J]. Remote Sens., 2015, 7(5):5495-5510
|
[72] |
HE T, LIANG S, WANG D. Direct estimation of land surface albedo from simultaneous misr data[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(5):2605-2617
|
[73] |
DARNELL W L, GUPTA S K, STAYLOR W F. Downward longwave surface radiation from sun-synchronous satellite data:validation of methodology[J]. J. Appl. Meteorol. Climatol., 1986, 25(7):1012-1021
|
[74] |
CHENG J, LIANG S, WANG W, et al. An efficient hybrid method for estimating clear-sky surface downward longwave radiation from MODIS data[J]. J. Geophys. Res.:Atmos., 2017, 122(5):2616-2630
|
[75] |
YU S S, XIN X Z, LIU Q H, et al. Comparison of cloudy-sky downward longwave radiation algorithms using synthetic data, ground-based data, and satellite data[J]. J. Geophys. Res.:Atmos., 2018, 123(10):5397-5415
|
[76] |
WANG T, SHI J, YU Y, et al. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements[J]. Remote Sens. Environ., 2018, 205:100-111
|
[77] |
YANG F, CHENG J. A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters[J]. Remote Sens. Environ., 2020, 248. DOI:10. 1016/j.rse.2020.111972
|
[78] |
SCHULZ J, ALBERT P, BEHR H D, et al. Operational climate monitoring from space:the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF)[J]. Atmos. Chem. Phys., 2009, 9(5):1687-1709
|
[79] |
LIANG S L, CHENG J, JIA K, et al. The Global LAnd Surface Satellite (GLASS) product suite[J]. Bull. Amer. Meteorol. Soc., 2020. DOI.org/10.1175/BAMS-D-18-0341.1
|
[80] |
ZENG Q, CHENG J, DONG L. Assessment of the long-term high-spatial-resolution Global LAnd Surface Satellite (GLASS) surface longwave radiation product using ground measurements[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020, 13:2032-2055
|
[81] |
LI Z L, TANG B H, WU H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sens. Environ., 2013, 131:14-37
|
[82] |
WAN Z M, LI Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 1997, 35(4):980-996
|
[83] |
YU Y Y, PRIVETTE J L, PINHEIRO A C. Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(10):2340-2350
|
[84] |
GILLESPIE A, ROKUGAWA S, MATSUNAGA Tsuneo, et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Trans. Geosci. Remote Sens., 1998, 36(4):1113-1126
|
[85] |
XU S, CHENG J. A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering[J]. Remote Sens. Environ., 2021, 254:112256
|
[86] |
JIN M L, LIANG S L. An improved land surface emissivity parameter for land surface models using global remote sensing observations[J]. J. Clim., 2006, 19(12):2867-2881
|
[87] |
CHENG Jie, LIANG Shunlin, YAO Yunjun, et al. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation[J]. IEEE Geosci. Remote Sens. Lett., 2013, 10(2):401-405
|
[88] |
CHENG J, LIANG S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product[J]. J. Geophys. Res.:Atmos., 2014, 119(2):614-634
|
[89] |
CHENG Jie, LIANG S, VERHOEF Wout, et al. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(2):905-917
|
[90] |
GRISTEY J J, CHIU J C, GURNEY R J, et al. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites[J]. J. Geophys. Res.:Atmos., 2017, 122(2):1114-1131
|
[91] |
MEFTAH M, DAMÉL, BOLSÉE D, et al. SOLAR-ISS:a new reference spectrum based on SOLAR/SOLSPEC observations[J]. Astron. Astrophys., 2018, 611:A1
|
[92] |
WIELICKI B A, YOUNG D F, MLYNCZAK M G, et al. Achieving climate change absolute accuracy in orbit[J]. Bull. Amer. Meteorol. Soc., 2013, 94(10):1519-1539
|
[93] |
LIANG S. Remote Sensing of Earth's Energy Budget:An Overview of Recent Progress[M]. 2017:1-31
|
[94] |
MA H, LIANG S L, XIAO Z Q, et al. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations[J]. J. Photogramm. Remote Sens., 2017, 128:240-254
|
[95] |
LEWIS P, GÓMEZ-DANS J, KAMINSKI T, et al. An Earth Observation Land Data Assimilation System (EO-LDAS)[J]. Remote Sens. Environ., 2012, 120:219-235
|
[96] |
LIU Changming. Research on the evolution of water cycle in the Yellow River Basin[J]. Adv. Water Sci., 2004, 15:608-614(刘昌明. 黄河流域水循环演变若干问题的研究[J]. 水科学进展, 2004, 15:608-614)
|
[97] |
SHI Jiancheng, LEI Yonghui. Remote sensing and Earth system science[J]. J. Remote Sens., 2016, 20:827-831(施建成, 雷永荟. 遥感与地球系统科学[J]. 遥感学报, 2016, 20:827-831)
|
[98] |
HU J Y, TANG S H, LIU H L, et al. An operational precipitable water vapor retrieval algorithm for Fengyun-2F/VLSSR using a modified three-band physical split-window method[J]. J. Meteorol. Res., 2019, 33(2):276-288
|
[99] |
WANG Y, FU Y F, LIU G S, et al. A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship[J]. J. Geophys. Res.:Atmos., 2009, 114(D21):DOI: 10.1029/2008JD011057
|
[100] |
DU J Y, KIMBALL J S, JONES L A. Satellite microwave retrieval of total precipitable water vapor and surface air temperature over land from AMSR2[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(5):2520-2531
|
[101] |
JI D B, SHI J C, XIONG C, et al. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing[J]. Remote Sens. Environ., 2017, 191:313-327
|
[102] |
LETU H, ISHIMOTO H, RIEDI J, et al. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission[J]. Atmos. Chem. Phys., 2015, 15(21):31665-31703
|
[103] |
LETU H, NAGAO T M, NAKAJIMA T Y, et al. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite:capability of the ahi to monitor the dc cloud generation process[J]. IEEE Trans. Geosci. Remote Sens., 2018, 6:1-11
|
[104] |
SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. J. Geophys. Res. Atmos., 2014, 119(6):3063-3075
|
[105] |
MA Y Z, HONG Y, CHEN Y, et al. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the tibetan plateau[J]. J. Geophys. Res.:Atmos., 2018, 123(2):1-21
|
[106] |
SHI J, JIANG L, ZHANG L, et al. Physically based estimation of bare-surface soil moisture with the passive radiometers[J]. IEEE Trans. Geosci. Remote Sens. A Publ. IEEE Geosci. Remote Sens. Soc., 2006, 44:3145-3153
|
[107] |
KANG C S, ZHAO T J, SHI J C, et al. Global soil moisture retrievals from the chinese FY-3D microwave radiation imager[J]. IEEE Trans. Geosci. Remote Sens., 2020, 99:1-15
|
[108] |
ZHAO T J, SHI J C, LIN M S, et al. Potential soil moisture product from the Chinese HY-2 scanning microwave radiometer and its initial assessment[J]. J. Appl. Remote Sens., 2014, 8(1):083560
|
[109] |
SHI C X, XIE Z H, QIAN H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. ENCE China, 2011, 54(9):1430-1440
|
[110] |
YANG K, CHEN Y Y, HE J, et al. Development of a daily soil moisture product for the period of 2002-2011 in Chinese mainland[J]. Sci. China Earth Sci., 2020, 63(8):1113-1125
|
[111] |
SHI J C, DONG X L, ZHAO T J, et al. WCOM:the science scenario and objectives of a global water cycle observation mission[C]//IGARSS 2014-2014 IEEE International Geoscience and Remote Sensing Symposium. Quebec:IEEE, 2014
|
[112] |
ZHAO T J, SHI J C, LV L Q, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sens. Environ., 2020, 240:111680
|
[113] |
CAO Meisheng, LI Peji, ROBINSON D A, et al. Evaluation and preliminary application of SMMR microwave remote sensing of snow cover in Western China[J]. J. Remote Sens., 1993, 4:260-269(曹梅盛, 李培基, ROBINSON D A, 等. 中国西部积雪SMMR微波遥感的评价与初步应用[J]. 遥感学报, 1993, 4:260-269)
|
[114] |
CHE T, LI X, JIN R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Ann. Glaciol., 2008, 49:145-154
|
[115] |
SUN Zhiwen. Research and System Development of Snow Parameter Inversion Algorithm for FY-3 MWRI[D]. Beijing:Beijing Normal University, 2007(孙知文. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D]. 北京:北京师范大学, 2007)
|
[116] |
CHANG S, SHI J C, JIANG L M, et al. Improved snow depth retrieval algorithm in China area using passive microwave remote sensing data[C]//Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009
|
[117] |
JIANG L M, WANG P, ZHANG L X, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Sci. China:Earth Sci., 2014, 57(6):1278-1292
|
[118] |
JIANG L, SHI J,TJUATJA S, et al. Estimation of snow water equivalence using the polarimetric scanning radiometer from the Cold Land Processes Experiments (CLPX03)[J]. IEEE Geosci. Remote Sens. Lett., 2011, 8(2):359-363
|
[119] |
JIANG L M, SHI J C, TJUATJA S B, et al. A parameterized multiple-scattering model for microwave emission from dry snow[J]. Remote Sens. Environ., 2007, 111(2-3):357-366
|
[120] |
DAI L Y, CHE T, WANG J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sens. Environ., 2012, 127(1):14-29
|
[121] |
CHE T, DAI L Y, ZHENG X M, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sens. Environ., 2016, 183:334-349
|
[122] |
CHE T, LI X, JIN R, et al. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth[J]. Remote Sens. Environ., 2014, 143:54-63
|
[123] |
XIAO X G, ZHANG T J, ZHONG X Y, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sens. Environ., 2018, 210:48-64
|
[124] |
YANG J W, JIANG L M, LUOJUS K, et al. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach[J]. Cryosph., 2020, 14(6):1763-1778
|
[125] |
GU L J, REN R Z, ZHAO K, et al. Snow depth and snow cover retrieval from FengYun3B microwave radiation imagery based on a snow passive microwave unmixing method in Northeast China[J]. J. Appl. Remote Sens., 2014, 8(1):084682
|
[126] |
GU L J, REN R Z, LI X F. Snow depth retrieval based on a multifrequency dual-polarized passive microwave unmixing method from mixed forest observations[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(99):1-13
|
[127] |
GU L, REN R, LI X, et al. Snow depth retrieval based on a multifrequency passive microwave unmixing method for saline-alkaline land in the Western Jilin Province of China[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2018, 11(7):2210-2222
|
[128] |
LIU X J, JIANG L M, WANG G X, et al. Using a linear unmixing method to improve passive microwave snow depth retrievals[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2018, 99:1-16
|
[129] |
SHI J C, DOZIER, J. Estimation of snow water equivalence using SIR-C/X-SAR, part I:inferring snow density and subsurface properties[J]. IEEE Trans. Geosci. Remote Sens., 2000, 38(6).DOI: 10.1109/36.885195
|
[130] |
SHI J C, DOZIER J. Estimation of snow water equivalence using SIR-C/X-SAR, Part II:inferring snow depth and particle size[J]. IEEE Trans. Geosci. Remote Sens., 2000, 38(6):2475-2488
|
[131] |
DU J Y, SHI J C, ROTT H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J]. Remote Sens. Environ., 2010, 114(5):1089-1098
|
[132] |
CUI Y R, XIONG C, LEMMETYINEN J, et al. Estimating snow water equivalent with backscattering at X and Ku band based on absorption loss[J]. Remote Sens., 2016, 8(6):505
|
[133] |
SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrol. Earth Syst. Sci., 2002, 6(1):85-100
|
[134] |
LIU S M, LU L, MAO D, et al. Evaluating parametrizations of aerodynamic resistance to heat transfer using field measurement[J]. Hydrol. Earth Syst. Sci., 2007, 11:769-783
|
[135] |
HU G C, JIA L. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations[J]. Remote Sens., 2015, 7(3):3056-3087
|
[136] |
JIA L, ZHENG C, HU G C, et al. Evapotranspiration[J]. Comprehensive Remote Sens., 2018, 4:25-50
|
[137] |
ZHANG Y Q, KONG D D, GAN R, et al. Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sens. Environ., 2019, 222:165-182
|
[138] |
LIU L B, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nat. Commun., 2020, 11(1):1234567890
|
[139] |
WANG X X, XIAO X M, ZOU Z H, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nat. Commun., 2020, 11(1):3471
|
[140] |
XIAO Z Q, LIANG S L, WANG J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(9):5301-5318
|
[141] |
LIU Y, LIU R, CHEN J M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. J. Geophys. Res.:Biogeosci., 2012, 117(G4).DOI: 10.1029/2012JG002084
|
[142] |
DENG D, CHEN J M, PLUMMER S, et al. Global LAI algorithm integrating the bidirectional information[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44 (8):2219-2229
|
[143] |
ZHU L, CHEN J M, TANG S H, et al. Inter-Comparison and validation of the FY-3A/MERSI LAI product over mainland China[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2013, 7(2):458-468
|
[144] |
CHEN W, ZHANG Y H, YIN Z, et al. The TanSat mission:global CO2 observation and monitoring[C]//Proceedings of the 63rd International Astronautical Congress. 2012:4419-4425
|
[145] |
CHEN B, LIU J, CHEN J M, et al. Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems[J]. Agricult. Forest Meteorol., 2016, 216:82-92
|
[146] |
ZHU G L, JU W M, CHEN J M, et al. Foliage clumping index over China's landmass retrieved from the MODIS BRDF parameters product[J]. IEEE Trans. Geosci. Remote Sens., 2011, 50(6):2122-2137
|
[147] |
WEI S S, FANG H L, SCHAAF C B, et al. Global 500m clumping index product derived from MODIS BRDF data (2001-2017)[J]. Remote Sens. Environ., 2019, 232:111296
|
[148] |
LEFSKY M A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophys. Res. Lett., 2010, 37(15).DOI: 10.1029/2010GL043622
|
[149] |
XU M Z, LIU R G, CHEN J M, et al. Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach[J]. Remote Sens. Environ., 2019, 224:60-73
|
[150] |
CROFT H, CHEN J M, WANG R, et al. The global distribution of leaf chlorophyll content[J]. Remote Sens. Environ., 2020, 236(2020):111479
|
[151] |
LI D, CHEN J M, ZHANG X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sens. Environ., 2020, 248:111985
|
[152] |
ZHANG Z Y, CHEN J M, GUANTER L, et al. From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynthesis:first results from TROPOMI[J]. Geophys. Res. Lett., 2019, 46(21):12030-12040
|
[153] |
ZHANG Z Y, ZHANG Y G, ZHANG Q, et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll f
|