留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国空间地球科学发展现状及未来策略

施建成 郭华东 董晓龙 梁顺林 陈镜明 宫鹏 杨晓峰 程洁 林明森 张鹏 张伟 居为民 刘毅 李增元 赵天杰

施建成, 郭华东, 董晓龙, 梁顺林, 陈镜明, 宫鹏, 杨晓峰, 程洁, 林明森, 张鹏, 张伟, 居为民, 刘毅, 李增元, 赵天杰. 中国空间地球科学发展现状及未来策略[J]. 空间科学学报, 2021, 41(1): 95-117. doi: 10.11728/cjss2021.01.095
引用本文: 施建成, 郭华东, 董晓龙, 梁顺林, 陈镜明, 宫鹏, 杨晓峰, 程洁, 林明森, 张鹏, 张伟, 居为民, 刘毅, 李增元, 赵天杰. 中国空间地球科学发展现状及未来策略[J]. 空间科学学报, 2021, 41(1): 95-117. doi: 10.11728/cjss2021.01.095
SHI Jiancheng, GUO Huadong, DONG Xiaolong, LIANG Shunlin, CHEN Jingming, GONG Peng, YANG Xiaofeng, CHENG Jie, LIN Mingsen, ZHANG Peng, ZHANG Wei, JU Weimin, LIU Yi, LI Zengyuan, ZHAO Tianjie. Developments and Future Strategies of Earth Science from Space in China[J]. Journal of Space Science, 2021, 41(1): 95-117. doi: 10.11728/cjss2021.01.095
Citation: SHI Jiancheng, GUO Huadong, DONG Xiaolong, LIANG Shunlin, CHEN Jingming, GONG Peng, YANG Xiaofeng, CHENG Jie, LIN Mingsen, ZHANG Peng, ZHANG Wei, JU Weimin, LIU Yi, LI Zengyuan, ZHAO Tianjie. Developments and Future Strategies of Earth Science from Space in China[J]. Journal of Space Science, 2021, 41(1): 95-117. doi: 10.11728/cjss2021.01.095

中国空间地球科学发展现状及未来策略

doi: 10.11728/cjss2021.01.095
基金项目: 

中国科学院战略性先导科技专项(A类)项目“地球大数据科学工程”资助(XDA19000000)

详细信息
    作者简介:

    施建成,E-mail:shijiancheng@nssc.ac.cn

    通讯作者:

    郭华东,E-mail:hdguo@radi.ac.cn

  • 中图分类号: TP391

Developments and Future Strategies of Earth Science from Space in China

  • 摘要: 空间地球科学是以空间对地观测为主要信息获取手段,研究地球系统的各圈层及之间的相互作用、过程与演变,对地球进行系统研究的综合性交叉学科.为纪念空间科学学会成立40周年,本文系统回顾了中国空间地球科学的发展历程,分析当前面临的机遇与挑战,进而提出中国空间地球科学未来发展的建议.

     

  • [1] COUNCIL N R. Earth System Science:A Closer View[R]. Washington DC:The National Academies Press, 1988:210
    [2] LAWLER A. NASA mission gets down to Earth[J]. Science, 1995, 269(5228):1208-1210
    [3] BORGEAUD M, DRINKWATER M, SILVESTRIN P, et al. Status of the ESA Earth explorer missions and the new ESA Earth observation science strategy[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan:IEEE, 2015:4189-4192
    [4] SIMON P, HOLLINGSWORTH A, CARLI B, et al. The Changing Earth:New scientific challnges for ESA's Living Planet Programme[R]. Paris:European Space Agency, 2006:83
    [5] LEEMANS R, ASRAR G, BUSALACCHI A, et al. Developing a common strategy for integrative global environmental change research and outreach:the Earth System Science Partnership (ESSP)[J]. Curr. Opin. Environ. Sust., 2009, 1(1):4-13
    [6] LEFEVRE R J, PEARLMAN J, WIENER T F. The role of science and technology in GEOSS[C]//2010 IEEE Aerospace Conference. Big Sky:IEEE, 2010:1-7
    [7] VAN DER HEL S. New science for global sustainability——The institutionalisation of knowledge co-production in future Earth[J]. Environ. Sci. Policy, 2016, 61:165-175
    [8] LU Naimeng, GU Songyan. Review and prospect on the development of meteorological satellites[J]. J. Remote Sens., 2016, 20:832-841(卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报, 2016, 20:832-841)
    [9] JIANG Xingwei, LIN Mingsen, ZHANG Youguang. Progress and prospect of chinese ocean satellites[J]. J. Remote Sens., 2016, 20:1185-1198(蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20:1185-1198)
    [10] LI Li. CBERS-04A satellite mission[J]. Satellite Appl., 2020, 1:62(李莉. 中巴地球资源卫星04A星[J]. 卫星应用, 2020, 1:62)
    [11] WANG Qiao, LIU Sihan. Research and implementation of national environmental remote sensing monitoring system[J]. J. Remote Sens., 2016, 20:1161-1169(王桥, 刘思含. 国家环境遥感监测体系研究与实现[J]. 遥感学报, 2016, 20:1161-1169)
    [12] TANG Xinming, WANG Hongyan, ZHU Xiaoyong. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geod. Cartograph. Sin., 2017, 46:1482-1491(唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017, 46:1482-1491)
    [13] TONG Xudong. Development of China high-resolution Earth observation system[J]. J. Remote Sens., 2016, 20:775-780(童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016, 20:775-780)
    [14] HAN Zhen, JIN Yaqiu, YUN Caixing. Spatial and temporal distributions of suspended sediment contents in the yangtze river estuary using the CMODIS image data from China's SZ-3 spacecraft[J]. J. Remote Sens., 2006, 3:381-386(韩震, 金亚秋, 恽才兴. 神舟三号CMODIS数据获取长江口悬浮泥沙含量的时空分布[J]. 遥感学报, 2006, 3:381-386)
    [15] ZHANG Dehai, JIANG Jingshan, ZHENG Zhenpan, et al. SZ-4 Main Payload-Multi-Mode microwave remote sensor[J]. Remote Sens. Technol. Appl., 2005, 20:74-80(张德海, 姜景山, 郑震藩, 等. 神舟4号主载荷elax——elax多模态微波遥感器[J]. 遥感技术与应用, 2005, 20:74-80)
    [16] LI Hua, DU Yongming, LIU Qinhuo, et al. Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect[J]. J. Remote Sens., 2014, 18:133-143(历华, 杜永明, 柳钦火, 等. 天宫一号数据地表温度反演及其在城市热岛效应中的应用[J]. 遥感学报, 2014, 18:133-143)
    [17] PANG Y, ZHANG L H, LI Z Y, et al. Forest change detection using Tiangong-1 and Landsat 7 Earth observation data[J]. J. Remote Sens., 2016, 18:121-125(庞勇, 张连华, 李增元, 等. 利用天宫一号和Landsat7对地观测数据的森林变化检测[J]. 遥感学报, 2016, 18:121-125)
    [18] REN Haigen, LI Shengyang. Research progress of Tiangong-2 Earth observation applications[J]. Manned Spaceflight, 2019, 25:825-833(任海根, 李盛阳. 天宫二号对地观测应用研究进展[J]. 载人航天, 2019, 25:825-833)
    [19] LIU Y, WANG J, YAO L, et al. The TanSat mission:preliminary global observations[J]. Sci. Bull., 2018, 63(18):1200-1207
    [20] YANG D, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Adv. Atmos. Sci., 2021, 38(1):8-11
    [21] DU S S, LIU L Y, LIU X J, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Sci. Bull., 2018, 63(22):1502-1512
    [22] HAUSER D, DONG X, AOUF L, et al. Overview of the CFOSAT mission[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016:5789-5792
    [23] TISON C, AMIOT T, BOURBIER J, et al. Directional wave spectrum estimation by SWIM instrument on CFOSAT[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009:V-312-V-315
    [24] LIN W M, DONG X L. Design and optimization of a Ku-band rotating, range-gated fanbeam scatterometer[J]. Int. J. Remote Sens., 2011, 32(8):2151-2171
    [25] WANG Lanwei, HU Zhe, SHEN Xuhui, et al. Data processing methods and procedures of CSES satellite[J]. J. Remote Sens., 2018, 22:39-55(王兰炜, 胡哲, 申旭辉, 等. 电磁监测试验卫星(张衡一号)数据处理方法和流程[J]. 遥感学报, 2018, 22:39-55)
    [26] DU S S, LIU L Y, LIU X J, et al. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) onboard the first Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1):specifications and prospects[J]. Sensors, 2020, 20(3):815
    [27] CHEN J M, MENGES C H, LEBLANC S G. Global mapping of foliage clumping index using multi-angular satellite data[J]. Remote Sens. Environ., 2005, 97(4):447-457
    [28] WANG Y Y, LI G C, DING J H, et al. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height[J]. Remote Sens. Environ., 2016, 174:24-43
    [29] LIANG S L, WANG D D, HE T, et al. Remote sensing of Earth's energy budget:synthesis and review[J]. Int. J. Digital Earth, 2019, 12(7):1-44
    [30] KOPP G. 5.02-Earth's incoming energy:the total solar irradiance[M]//Comprehensive Remote Sensing. Oxford:Elsevier, 2018:32-66
    [31] GUEYMARD C A. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations[J]. Sol. Energy, 2018, 168:2-9
    [32] STEPHENS G L, O'BRIEN D, WEBSTER P J, et al. The albedo of Earth[J]. Rev. Geophys., 2015, 53(1):141-163
    [33] WIELICKI B A, WONG T, LOEB N, et al. Changes in Earth's albedo measured by satellite[J]. Science, 2005, 308(5723):825
    [34] LOEB N G, SU W, DOELLING D R, et al. Comprehensive remote sensing[M]//Earth's Top-of-Atmosphere Radiation Budget. Oxford:Elsevier, 2018:67-84
    [35] LOEB N G, KATO S, LOUKACHINE K, et al. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth's radiant energy system instrument on the terra satellite. part i:methodology[J]. J. Atmos. Ocean. Technol., 2005, 22(4):338-351
    [36] WANG D D, LIANG S L. Estimating top-of-atmosphere daily reflected shortwave radiation flux over land from MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(7). DOI: 10.1109/TGRS.2017.2686599
    [37] LOEB N, THORSEN T, NORRIS J, et al. Changes in Earth's energy budget during and after the "Pause" in global warming:an observational perspective[J]. Climate, 2018, 6(3):62
    [38] KIM B Y, LEE K T, JEE J B, et al. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data[J]. Remote Sens. Environ., 2018, 204:498-508
    [39] LIANG S, WANG D D, HE T, et al. Remote sensing of Earth's energy budget:synthesis and review[J]. Int. J. Digital Earth, 2019, 12(7):1-44
    [39] ZHOU Y, S. LIANG D, WANG Z, et al. Evaluation of six outgoing longwave radiation satellite products[J]. J. Geophys. Res., 2019(press)
    [40] SUSSKIND J, MOLNAR G, IREDELL L, et al. Interannual variability of outgoing longwave radiation as observed by AIRS and CERES[J]. J. Geophys. Res. Atmos., 2012, 117(D23). DOI: 10.1029/2012JD017997
    [41] SU W Y, LOEB N G, LIANG L S, et al. The El Nio-Southern Oscillation effect on tropical outgoing longwave radiation:a daytime versus nighttime perspective[J]. J. Geophys. Res., 2017, 122(15). DOI: 10.1002/2017JD027002
    [42] HANSEN J, SATO M, KHARECHA P, et al. Earth's energy imbalance and implications[J]. Atmos. Chem. Phys., 2011, 11(9). DOI: 10.5194/acp-11-13421-2011
    [43] TRENBERTH K E, FASULLO J T, BALMASEDA M A. Earth's energy imbalance[J]. J. Climate, 2014, 27(9):3129-3144
    [44] LOEB N G, LYMAN J M, JOHNSON G C, et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty[J]. Nature Geosci., 2012, 5(2):110-113
    [45] RESPLANDY L, KEELING R F, EDDEBBAR Y, et al. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition[J]. Nature, 2018, 563(7729):105-108
    [46] SCHMETZ J, PILI P, TJEMKES S, et al. Supplement to an introduction to Meteosat Second Generation (MSG)[J]. Bull. Amer. Meteorol. Soc., 2002, 83(7):991-991
    [47] PINKER R T, LI X, MENG W, et al. Toward improved satellite estimates of short-wave radiative fluxes-Focus on cloud detection over snow:2. results[J]. J. Geophys. Res. Atmos., 2007, 112(D9). DOI: 10.1029/2005JD006698
    [48] LU N, LIU R G, YUAN L J, et al. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China[J]. J. Geophys. Res.:Atmos., 2010, 115(D18). DOI: 10.1029/2009JD013457
    [49] HUANG G H, MA M G, LIANG S L, et al. A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data[J]. J. Geophys. Res.:Atmos., 2011, 116(D22). DOI: 10.1029/2011JD016120
    [50] LASZLO I, CIREN P, LIU H Q, et al. Remote sensing of aerosol and radiation from geostationary satellites[J]. Adv. Space Res., 2008, 41(11):1882-1893
    [51] LIANG S L, ZHENG T, LIU R G, et al. Estimation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data[J]. J. Geophys. Res.:Atmos., 2006, 111(D15). DOI: 10.1029/2005JD006730
    [52] LIANG S L, ZHENG T, WANG D D, et al. Mapping high-resolution incident photosynthetically active radiation over land from polar-orbiting and geostationary satellite data[J]. Photogramm. Eng. Remote Sens., 2007, 73(10):1085-1089
    [53] LIANG S, WANG K, ZHANG X, et al. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2010, 3(3):225-240
    [54] OREOPOULOS L, MLAWER E, DELAMERE J, et al. The continual intercomparison of radiation codes:results from phaseI[J]. J. Geophys. Res.:Atmos., 2012, 117 (D6).DOI: 10.1029/2011JD016821
    [55] KATO S, ROSE F G, RUTAN D A, et al. Surface irradiances of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product[J]. J. Clim., 2018, 31(11). DOI: 10.1175/JCLI-D-17-0523.1
    [56] ZHANG Y C, ROSSOW W B, LACIS A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:refinements of the radiative transfer model and the input data[J]. J. Geophys. Res.:Atmos., 2004, 109(D19). DOI: 10.1029/2003JD004457
    [57] PINKER R T, TARPLEY J D, LASZLO I, et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project[J]. J. Geophys. Res.:Atmos., 2003, 108(D22). DOI: 10.1029/2002JD003301
    [58] DENEKE H M, FEIJT A J, ROEBELING R A. Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties[J]. Remote Sens. Environ., 2008, 112(6):3131-3141
    [59] LIANG S, ZHAO X, LIU S, et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies[J]. Int. J. Digital Earth, 2013, 6(1):5-33
    [60] ZHANG Y, HE T, LIANG S L, et al. Estimation of all-sky instantaneous surface incident shortwave radiation from Moderate Resolution Imaging Spectroradiometer data using optimization method[J]. Remote Sen. Environ., 2018, 209:468-479
    [61] QIN J, CHEN Z Q, YANG K, et al. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products[J]. Appl. Energy, 2011, 88 (7):2480-2489
    [62] WILD M. Enlightening global dimming and brightening[J]. Bull. Amer. Meteorol. Soc., 2012, 93(1):27-37
    [63] WILD M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming[J]. Wiley Interdiscipl. Rev. Clim. Change, 2016, 7(1):91-107
    [64] BOUSSETTA S, BALSAMO G, DUTRA E, et al. Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction[J]. Remote Sens. Environ., 2015, 163:111-126
    [65] QU Y, LIANG S L, LIU Q, et al. Mapping surface broadband albedo from satellite observations:a review of literatures on algorithms and products[J]. Remote Sens., 2015, 7(1):990-1020
    [66] LIANG S, FANG H, CHEN M. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(11):2490-2498
    [67] SCHAAF C B, GAO F, STRAHLER A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sens. Environ., 2002, 83(1/2):135-148
    [68] LIANG S L, MEMBER S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery[J]. Geosci. Remote Sens. IEEE Trans., 2003, 41(1):136-145
    [69] LIANG S L, STROEVE J, BOX J E. Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS):the improved direct retrieval algorithm and validation with Greenland in situ measurement[J]. J. Geophys. Res. Atmos., 2005, 110(D10). DOI: 10.1029/2004JD005493
    [70] WANG K C, DICKINSON R E. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses[J]. Rev. Geophys., 2013, 51(2):150-185
    [71] HE T, LIANG S L, WANG D D, et al. Land surface albedo estimation from chinese HJ satellite data based on the direct estimation approach[J]. Remote Sens., 2015, 7(5):5495-5510
    [72] HE T, LIANG S, WANG D. Direct estimation of land surface albedo from simultaneous misr data[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(5):2605-2617
    [73] DARNELL W L, GUPTA S K, STAYLOR W F. Downward longwave surface radiation from sun-synchronous satellite data:validation of methodology[J]. J. Appl. Meteorol. Climatol., 1986, 25(7):1012-1021
    [74] CHENG J, LIANG S, WANG W, et al. An efficient hybrid method for estimating clear-sky surface downward longwave radiation from MODIS data[J]. J. Geophys. Res.:Atmos., 2017, 122(5):2616-2630
    [75] YU S S, XIN X Z, LIU Q H, et al. Comparison of cloudy-sky downward longwave radiation algorithms using synthetic data, ground-based data, and satellite data[J]. J. Geophys. Res.:Atmos., 2018, 123(10):5397-5415
    [76] WANG T, SHI J, YU Y, et al. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements[J]. Remote Sens. Environ., 2018, 205:100-111
    [77] YANG F, CHENG J. A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters[J]. Remote Sens. Environ., 2020, 248. DOI:10. 1016/j.rse.2020.111972
    [78] SCHULZ J, ALBERT P, BEHR H D, et al. Operational climate monitoring from space:the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF)[J]. Atmos. Chem. Phys., 2009, 9(5):1687-1709
    [79] LIANG S L, CHENG J, JIA K, et al. The Global LAnd Surface Satellite (GLASS) product suite[J]. Bull. Amer. Meteorol. Soc., 2020. DOI.org/10.1175/BAMS-D-18-0341.1
    [80] ZENG Q, CHENG J, DONG L. Assessment of the long-term high-spatial-resolution Global LAnd Surface Satellite (GLASS) surface longwave radiation product using ground measurements[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020, 13:2032-2055
    [81] LI Z L, TANG B H, WU H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sens. Environ., 2013, 131:14-37
    [82] WAN Z M, LI Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 1997, 35(4):980-996
    [83] YU Y Y, PRIVETTE J L, PINHEIRO A C. Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(10):2340-2350
    [84] GILLESPIE A, ROKUGAWA S, MATSUNAGA Tsuneo, et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Trans. Geosci. Remote Sens., 1998, 36(4):1113-1126
    [85] XU S, CHENG J. A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering[J]. Remote Sens. Environ., 2021, 254:112256
    [86] JIN M L, LIANG S L. An improved land surface emissivity parameter for land surface models using global remote sensing observations[J]. J. Clim., 2006, 19(12):2867-2881
    [87] CHENG Jie, LIANG Shunlin, YAO Yunjun, et al. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation[J]. IEEE Geosci. Remote Sens. Lett., 2013, 10(2):401-405
    [88] CHENG J, LIANG S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product[J]. J. Geophys. Res.:Atmos., 2014, 119(2):614-634
    [89] CHENG Jie, LIANG S, VERHOEF Wout, et al. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(2):905-917
    [90] GRISTEY J J, CHIU J C, GURNEY R J, et al. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites[J]. J. Geophys. Res.:Atmos., 2017, 122(2):1114-1131
    [91] MEFTAH M, DAMÉL, BOLSÉE D, et al. SOLAR-ISS:a new reference spectrum based on SOLAR/SOLSPEC observations[J]. Astron. Astrophys., 2018, 611:A1
    [92] WIELICKI B A, YOUNG D F, MLYNCZAK M G, et al. Achieving climate change absolute accuracy in orbit[J]. Bull. Amer. Meteorol. Soc., 2013, 94(10):1519-1539
    [93] LIANG S. Remote Sensing of Earth's Energy Budget:An Overview of Recent Progress[M]. 2017:1-31
    [94] MA H, LIANG S L, XIAO Z Q, et al. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations[J]. J. Photogramm. Remote Sens., 2017, 128:240-254
    [95] LEWIS P, GÓMEZ-DANS J, KAMINSKI T, et al. An Earth Observation Land Data Assimilation System (EO-LDAS)[J]. Remote Sens. Environ., 2012, 120:219-235
    [96] LIU Changming. Research on the evolution of water cycle in the Yellow River Basin[J]. Adv. Water Sci., 2004, 15:608-614(刘昌明. 黄河流域水循环演变若干问题的研究[J]. 水科学进展, 2004, 15:608-614)
    [97] SHI Jiancheng, LEI Yonghui. Remote sensing and Earth system science[J]. J. Remote Sens., 2016, 20:827-831(施建成, 雷永荟. 遥感与地球系统科学[J]. 遥感学报, 2016, 20:827-831)
    [98] HU J Y, TANG S H, LIU H L, et al. An operational precipitable water vapor retrieval algorithm for Fengyun-2F/VLSSR using a modified three-band physical split-window method[J]. J. Meteorol. Res., 2019, 33(2):276-288
    [99] WANG Y, FU Y F, LIU G S, et al. A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship[J]. J. Geophys. Res.:Atmos., 2009, 114(D21):DOI: 10.1029/2008JD011057
    [100] DU J Y, KIMBALL J S, JONES L A. Satellite microwave retrieval of total precipitable water vapor and surface air temperature over land from AMSR2[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(5):2520-2531
    [101] JI D B, SHI J C, XIONG C, et al. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing[J]. Remote Sens. Environ., 2017, 191:313-327
    [102] LETU H, ISHIMOTO H, RIEDI J, et al. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission[J]. Atmos. Chem. Phys., 2015, 15(21):31665-31703
    [103] LETU H, NAGAO T M, NAKAJIMA T Y, et al. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite:capability of the ahi to monitor the dc cloud generation process[J]. IEEE Trans. Geosci. Remote Sens., 2018, 6:1-11
    [104] SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. J. Geophys. Res. Atmos., 2014, 119(6):3063-3075
    [105] MA Y Z, HONG Y, CHEN Y, et al. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the tibetan plateau[J]. J. Geophys. Res.:Atmos., 2018, 123(2):1-21
    [106] SHI J, JIANG L, ZHANG L, et al. Physically based estimation of bare-surface soil moisture with the passive radiometers[J]. IEEE Trans. Geosci. Remote Sens. A Publ. IEEE Geosci. Remote Sens. Soc., 2006, 44:3145-3153
    [107] KANG C S, ZHAO T J, SHI J C, et al. Global soil moisture retrievals from the chinese FY-3D microwave radiation imager[J]. IEEE Trans. Geosci. Remote Sens., 2020, 99:1-15
    [108] ZHAO T J, SHI J C, LIN M S, et al. Potential soil moisture product from the Chinese HY-2 scanning microwave radiometer and its initial assessment[J]. J. Appl. Remote Sens., 2014, 8(1):083560
    [109] SHI C X, XIE Z H, QIAN H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. ENCE China, 2011, 54(9):1430-1440
    [110] YANG K, CHEN Y Y, HE J, et al. Development of a daily soil moisture product for the period of 2002-2011 in Chinese mainland[J]. Sci. China Earth Sci., 2020, 63(8):1113-1125
    [111] SHI J C, DONG X L, ZHAO T J, et al. WCOM:the science scenario and objectives of a global water cycle observation mission[C]//IGARSS 2014-2014 IEEE International Geoscience and Remote Sensing Symposium. Quebec:IEEE, 2014
    [112] ZHAO T J, SHI J C, LV L Q, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sens. Environ., 2020, 240:111680
    [113] CAO Meisheng, LI Peji, ROBINSON D A, et al. Evaluation and preliminary application of SMMR microwave remote sensing of snow cover in Western China[J]. J. Remote Sens., 1993, 4:260-269(曹梅盛, 李培基, ROBINSON D A, 等. 中国西部积雪SMMR微波遥感的评价与初步应用[J]. 遥感学报, 1993, 4:260-269)
    [114] CHE T, LI X, JIN R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Ann. Glaciol., 2008, 49:145-154
    [115] SUN Zhiwen. Research and System Development of Snow Parameter Inversion Algorithm for FY-3 MWRI[D]. Beijing:Beijing Normal University, 2007(孙知文. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D]. 北京:北京师范大学, 2007)
    [116] CHANG S, SHI J C, JIANG L M, et al. Improved snow depth retrieval algorithm in China area using passive microwave remote sensing data[C]//Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009
    [117] JIANG L M, WANG P, ZHANG L X, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Sci. China:Earth Sci., 2014, 57(6):1278-1292
    [118] JIANG L, SHI J,TJUATJA S, et al. Estimation of snow water equivalence using the polarimetric scanning radiometer from the Cold Land Processes Experiments (CLPX03)[J]. IEEE Geosci. Remote Sens. Lett., 2011, 8(2):359-363
    [119] JIANG L M, SHI J C, TJUATJA S B, et al. A parameterized multiple-scattering model for microwave emission from dry snow[J]. Remote Sens. Environ., 2007, 111(2-3):357-366
    [120] DAI L Y, CHE T, WANG J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sens. Environ., 2012, 127(1):14-29
    [121] CHE T, DAI L Y, ZHENG X M, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sens. Environ., 2016, 183:334-349
    [122] CHE T, LI X, JIN R, et al. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth[J]. Remote Sens. Environ., 2014, 143:54-63
    [123] XIAO X G, ZHANG T J, ZHONG X Y, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sens. Environ., 2018, 210:48-64
    [124] YANG J W, JIANG L M, LUOJUS K, et al. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach[J]. Cryosph., 2020, 14(6):1763-1778
    [125] GU L J, REN R Z, ZHAO K, et al. Snow depth and snow cover retrieval from FengYun3B microwave radiation imagery based on a snow passive microwave unmixing method in Northeast China[J]. J. Appl. Remote Sens., 2014, 8(1):084682
    [126] GU L J, REN R Z, LI X F. Snow depth retrieval based on a multifrequency dual-polarized passive microwave unmixing method from mixed forest observations[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(99):1-13
    [127] GU L, REN R, LI X, et al. Snow depth retrieval based on a multifrequency passive microwave unmixing method for saline-alkaline land in the Western Jilin Province of China[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2018, 11(7):2210-2222
    [128] LIU X J, JIANG L M, WANG G X, et al. Using a linear unmixing method to improve passive microwave snow depth retrievals[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2018, 99:1-16
    [129] SHI J C, DOZIER, J. Estimation of snow water equivalence using SIR-C/X-SAR, part I:inferring snow density and subsurface properties[J]. IEEE Trans. Geosci. Remote Sens., 2000, 38(6).DOI: 10.1109/36.885195
    [130] SHI J C, DOZIER J. Estimation of snow water equivalence using SIR-C/X-SAR, Part II:inferring snow depth and particle size[J]. IEEE Trans. Geosci. Remote Sens., 2000, 38(6):2475-2488
    [131] DU J Y, SHI J C, ROTT H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J]. Remote Sens. Environ., 2010, 114(5):1089-1098
    [132] CUI Y R, XIONG C, LEMMETYINEN J, et al. Estimating snow water equivalent with backscattering at X and Ku band based on absorption loss[J]. Remote Sens., 2016, 8(6):505
    [133] SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrol. Earth Syst. Sci., 2002, 6(1):85-100
    [134] LIU S M, LU L, MAO D, et al. Evaluating parametrizations of aerodynamic resistance to heat transfer using field measurement[J]. Hydrol. Earth Syst. Sci., 2007, 11:769-783
    [135] HU G C, JIA L. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations[J]. Remote Sens., 2015, 7(3):3056-3087
    [136] JIA L, ZHENG C, HU G C, et al. Evapotranspiration[J]. Comprehensive Remote Sens., 2018, 4:25-50
    [137] ZHANG Y Q, KONG D D, GAN R, et al. Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sens. Environ., 2019, 222:165-182
    [138] LIU L B, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nat. Commun., 2020, 11(1):1234567890
    [139] WANG X X, XIAO X M, ZOU Z H, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nat. Commun., 2020, 11(1):3471
    [140] XIAO Z Q, LIANG S L, WANG J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(9):5301-5318
    [141] LIU Y, LIU R, CHEN J M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. J. Geophys. Res.:Biogeosci., 2012, 117(G4).DOI: 10.1029/2012JG002084
    [142] DENG D, CHEN J M, PLUMMER S, et al. Global LAI algorithm integrating the bidirectional information[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44 (8):2219-2229
    [143] ZHU L, CHEN J M, TANG S H, et al. Inter-Comparison and validation of the FY-3A/MERSI LAI product over mainland China[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2013, 7(2):458-468
    [144] CHEN W, ZHANG Y H, YIN Z, et al. The TanSat mission:global CO2 observation and monitoring[C]//Proceedings of the 63rd International Astronautical Congress. 2012:4419-4425
    [145] CHEN B, LIU J, CHEN J M, et al. Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems[J]. Agricult. Forest Meteorol., 2016, 216:82-92
    [146] ZHU G L, JU W M, CHEN J M, et al. Foliage clumping index over China's landmass retrieved from the MODIS BRDF parameters product[J]. IEEE Trans. Geosci. Remote Sens., 2011, 50(6):2122-2137
    [147] WEI S S, FANG H L, SCHAAF C B, et al. Global 500m clumping index product derived from MODIS BRDF data (2001-2017)[J]. Remote Sens. Environ., 2019, 232:111296
    [148] LEFSKY M A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophys. Res. Lett., 2010, 37(15).DOI: 10.1029/2010GL043622
    [149] XU M Z, LIU R G, CHEN J M, et al. Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach[J]. Remote Sens. Environ., 2019, 224:60-73
    [150] CROFT H, CHEN J M, WANG R, et al. The global distribution of leaf chlorophyll content[J]. Remote Sens. Environ., 2020, 236(2020):111479
    [151] LI D, CHEN J M, ZHANG X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sens. Environ., 2020, 248:111985
    [152] ZHANG Z Y, CHEN J M, GUANTER L, et al. From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynthesis:first results from TROPOMI[J]. Geophys. Res. Lett., 2019, 46(21):12030-12040
    [153] ZHANG Z Y, ZHANG Y G, ZHANG Q, et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll f
  • 加载中
计量
  • 文章访问数:  724
  • HTML全文浏览量:  11
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回