留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
林隽, 黄善杰, 李燕, 种晓宇, 张毅, 李明涛, 张艺腾, 周斌, 欧阳高翔, 项磊, 董亮, 季海生, 田晖, 宋红强, 刘煜, 金振宇, 冯晶, 张洪波, 张贤国, 张伟杰, 黄旻, 吕群波, 邓雷, 符慧山, 程鑫, 汪敏. 太阳爆发抵近探测——“触碰计划”[J]. 空间科学学报, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183
引用本文: 林隽, 黄善杰, 李燕, 种晓宇, 张毅, 李明涛, 张艺腾, 周斌, 欧阳高翔, 项磊, 董亮, 季海生, 田晖, 宋红强, 刘煜, 金振宇, 冯晶, 张洪波, 张贤国, 张伟杰, 黄旻, 吕群波, 邓雷, 符慧山, 程鑫, 汪敏. 太阳爆发抵近探测——“触碰计划”[J]. 空间科学学报, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183
LIN Jun, HUANG Shanjie, LI Yan, CHONG Xiaoyu, ZHANG Shenyi, LI Mingtao, ZHANG Yiteng, ZHOU Bin, OUYANG Gaoxiang, XIANG Lei, DONG Liang, JI Haisheng, TIAN Hui, SONG Hongqiang, LIU Yu, JIN Zhenyu, FENG Jing, ZHANG Hongbo, ZHANG Xianguo, ZHANG Weijie, HUANG Min, LÜ Qunbo, DENG Lei, FU Huishan, CHENG Xin, WANG Min. In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize[J]. Journal of Space Science, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183
Citation: LIN Jun, HUANG Shanjie, LI Yan, CHONG Xiaoyu, ZHANG Shenyi, LI Mingtao, ZHANG Yiteng, ZHOU Bin, OUYANG Gaoxiang, XIANG Lei, DONG Liang, JI Haisheng, TIAN Hui, SONG Hongqiang, LIU Yu, JIN Zhenyu, FENG Jing, ZHANG Hongbo, ZHANG Xianguo, ZHANG Weijie, HUANG Min, LÜ Qunbo, DENG Lei, FU Huishan, CHENG Xin, WANG Min. In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize[J]. Journal of Space Science, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183

太阳爆发抵近探测——“触碰计划”

doi: 10.11728/cjss2021.02.183
基金项目: 

中国科学院先导专项(A类)项目(XDA17040507),国家自然科学基金重点项目(11933009),中国科学院前沿科学重点研究项目(QYZDJ-SSWSLH012),云南省“高层次人才培养支持计划-云岭学者”专项和云南省“高层次人才培养支持计划-林隽科学家工作室”专项共同资助

详细信息
    作者简介:

    林隽,E-mail:jlin@ynao.ac.cn

  • 中图分类号: P182;P354;V524

In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize

  • 摘要: 本文旨在介绍一项具有重大科学意义和应用价值的深空探测任务构想.该任务将对驱动恒星大尺度爆发过程的中心结构(即磁重联电流片)进行抵近(原位)探测,主要目的是详细研究发生在离地球最近的恒星-太阳上的大尺度磁重联过程的精细物理特征,揭示太阳系中最为剧烈的能量释放过程(即太阳爆发或太阳风暴)的奥秘.该任务的科学目标:磁重联过程是发生在宇宙磁化等离子体中的能量转换和释放的核心过程,其一直是太阳物理、等离子体物理、空间科学研究领域内的一个极为重要的研究课题及研究方向.通过抵近观测可以将同样设备的分辨能力提高5~20倍,将提供在地球附近无法获得的太阳超清晰图像以及相应的物理信息,让人类在一个前所未有的平台上来研究、认识和了解太阳,从而解决太阳爆发核心驱动过程的精细物理性质与日冕加热等长期困扰太阳物理研究领域的难题.

     

  • [1] LIN J, SOON W, BALIUNAS S. The eruptive process in the solar atmosphere and the related theories[J]. Chin. Sci. Bull., 2002, 47(21):1601-1612(林隽, SOON W, BALIUNAS S. 太阳大气中的爆发过程及其理论[J]. 科学通报, 2002, 47(21):1601-1612)
    [2] LIN J, SOON W, BALIUNAS S L. Theories of solar eruptions:a review[J]. New Astron. Rev., 2003, 47(2):53-84
    [3] FANG C. Space weather comes into our life[J]. Chin. J. Nat., 2006, 28(4):194-198
    [4] REAMES D V. Solar energetic particles lecture notes in physics[J]. Springer Int. Publ. AG, 2017, 932:DOI:10. 1007/978-3-319-50871-9_5
    [5] YUAN F, LIN J, WU K, et al. A magnetohydrodynamical model for the formation of episodic jets[J]. Mon. Not. Royal Astron. Soc., 2009, 395:2183-2188
    [6] MENG Y, LIN J, ZHANG L, et al. An MHD model for magnetar giant flares[J]. Astrophys. J., 2014, 785:62
    [7] PRIEST E R. MHD of the Sun[M]. Cambridge UK:Cambridge University Press, 2014
    [8] PRIEST E R, FORBES G. Magnetic Reconnection[M]. Cambridge UK:Cambridge University Press, 2000
    [9] LIN J, WANG M, TIAN H, et al. In situ measurements of the solar eruption[J]. Sci. Sin-Phys. Mech. Astron., 2019, 49(5):059607
    [10] LIN J, FORBES T G. Effects of reconnection on the coronal mass ejection process[J]. J. Geophys. Res., 2000, 105:2375-2392
    [11] LIN J. Energetics and propagation of coronal mass ejections in different plasma environments[J]. Chin. J. Astron. Astrophys., 2002, 2:539-556
    [12] CIARAVELLA A, RAYMOND J C, LIN J, et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region[J]. Astrophys. J., 2002, 575:1116-1130
    [13] WEBB D F, BURKEPILE J, FORBES T G, et al. Observational evidence of new current sheets trailing coronal mass ejections[J]. J. Geophys. Res., 2003, 108(A12):1440
    [14] KO Y K, RAYMOND J C, LIN J, et al. Dynamical and physical properties of a post-coronal mass ejection current sheet[J]. Astrophys. J., 2003, 594:1068-1084
    [15] LIN J, KO Y K, SUI L, et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18[J]. Astrophys. J., 2005, 622:1251-1264
    [16] LIN J, LI J, FORBES T G, et al. Features and properties of coronal mass ejection/flare current sheets[J]. Astrophys. J., 2007, 658:123-126
    [17] LIN J, LI J, KO Y K, et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions[J]. Astrophys. J., 2009, 693:1666-1677
    [18] LIN J, MURPHY N A, SHEN C C, et al. Review on current sheets in CME development:theories and observations[J]. Space Sci. Rev., 2015, 194:237-302
    [19] LIN J, NI L. Large-scale current sheets in flares and CMEs[J]. Geophys. Monograph Ser., 2018, 235:239-255
    [20] WANG S M, WANG R S, LU Q M, et al. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection[J]. Nat. Comm., 2020, 11:3964
    [21] SHEN C C, LIN J, MUROHY N A, et al. Statistical and spectral properties of magnetic islands in reconnecting current sheets during two-ribbon flares[J]. Phys. Plasma, 2013, 20:072114
    [22] NI L, LIN J, MEI Z X, et al. Numerical experiments on the detailed energy conversion and spectrum studies in a corona current sheet[J]. Astrophys. J., 2015, 812:92
    [23] NI L, LIN J, ROUSSEV I I, et al. Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets[J]. Astrophys. J., 2016, 832:195
    [24] NI L, JI H T, MURPHY N A, et al. Magnetic reconnection in partially ionized plasmas[J]. Proceed. Royal Soc. A, 2020, 476:20190687
    [25] FORBES T G, LIN J. What can we learn about reconnection from coronal mass ejections[J]. J. Atmos. Sol. Terr. Phys., 2000, 62:1499-1507
    [26] WEBB D F, VOURLIDAS A. LASCO white-Light observations of eruptive current sheets trailing CMEs[J]. Sol. Phys., 2016, 291(12):3725-3749
    [27] SHEN C C, LIN J, MURPHY N A. Numerical experiments on fine structure within reconnecting current sheets in solar flares[J]. Astrophys. J., 2011, 737(1):14
    [28] MEI Z X, SHEN C C, WU N, et al. Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets[J]. Mon. Not. Royal Astron. Soc., 2012, 425:2824-2839
    [29] MEI Z X, KEPPENS R, ROUSSEV I I, et al. Magnetic reconnection during eruptive magnetic flux ropes[J]. Astron. Astrophys., 2017, 604:7
    [30] MEI Z X, KEPPENS R, ROUSSEV I I, et al. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere[J]. Astron. Astrophys., 2017, 609:A2
    [31] 毅, 张贤国, 王春琴, 等. 风云三号卫星空间高能质子探测器的几何因子计算[J]. 中国科学:地球科学, 2014, 57:2479-2486)
    [31] SHEN C C, KONG X L, GUO F, et al. The dynamical behavior of reconnection-driven termination shocks in solar flares:magnetohydrodynamic simulations[J]. Astrophys. J., 2018, 869(2):116
    [32] YE J, SHEN C C, RAYMOND J C, et al. Numerical study of the cascading energy conversion of the reconnection current sheet in solar eruptions[J]. Mon. Not. Royal Astron. Soc., 2019, 482:588
    [33] YE J, CAI Q W, SHEN C C, et al. The role of turbulence for heating plasmas in eruptive solar flares[J]. Astrophys. J., 2020, 897:64
    [34] FURTH H P. Prevalent instability of nonthermal plasmas[J]. Phys. Fluids, 1963, 6:48-57
    [35] LOUREIRO N F, SCHEKOCHIHINA A, COWLEY S C. Instability of current sheets and formation of plasmoid chains[J]. Phys. Plasma, 2007, 14:100703
    [36] NI L, GERMASCHEWSKI K, HUANG Y M, et al. Linear plasmoid instability of thin current sheets with shear flow[J]. Phys. Plasmas, 2010, 17:052109
    [37] NI L, ZIEGLER U, HUANG Y M, et al. Effects of plasma β on the plasmoid instability[J]. Phys. Plasmas, 2012, 19:072902
    [38] NI L, LIN J, MURPHHY N A, et al. Effects of the non-uniform initial environment and the guide field on the plasmoid instability[J]. Phys. Plasmas, 2013, 20:061206
    [39] NI L, LUKIN V, MURPHY N A, et al. Magnetic reconnection in strongly magnetized regions of the low solar chromosphere[J]. Astrophys. J., 2018, 852:95
    [40] SAVAGE S L, MCKENZIE D E, REEVES K K, et al. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9"Cartwheel CME" flare[J]. Astrophys. J., 2010, 722:329
    [41] FORBES T G, SEATON D B, REEVES K K. Reconnection in the post-impulsive phase of solar flares[J]. Astrophys. J., 2018, 858:70
    [42] LEE J K, CHO K S, LEE K S, et al. Formation of post-CME blobs observed by LASCO-C2 and K-Cor on 2017 September 10[J]. Astrophys. J., 2020, 892:129
    [43] LI Y, LIN J. Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points[J]. Sol. Phys., 2012, 279(1):91-113
    [44] LI Y, WINTER H D, MURPHY N A, et al. The dependence of particle acceleration on initial locations in reconnecting current sheets[J]. Publ. Astron. Soc. Japan, 2013, 65:101
    [45] LI Y, WU N, LIN J. Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field[J]. Astron. Astrophys., 2017, 605:120
    [46] GAN W Q, YAN Y H, HUANG Y. Prospect for space solar physics in 2016-2030[J]. Sci. Sin-Phys. Mech. Astron., 2019, 49(5):059602
    [47] FOX N J, VELLI M C, BALE S D, et al. The solar probe plus mission:humanity's first visit to our star[J]. Space Sci. Rev., 2016, 204:7-48
    [48] MCCOMAS D J, CHRISTIAN E R, COHEN C M S, et al. Probing the energetic particle environment near the sun[J]. Nature, 2019, 576:223-227
    [49] KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind[J]. Nature, 2019, 576:228-231
    [50] HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576:232-236
    [51] BALE S D, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576:237-242
    [52] HOWARD R A, VOURLIDAS A, COLANINNO R C, et al. The solar orbiter heliospheric imager (SoloHI)[J]. Astron. Astrophys., 2020, 642:13
    [53] BÁRTA M, BÜCHNER J, KARLIK'Y M, et al. Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis[J]. Astrophys. J., 2011, 737(1):24
    [54] MANN G, KLASSEN A, AURASS H, et al. Formation and development of shock waves in the solar corona and the near-Sun interplanetary space[J]. Astron. Astrophys., 2003, 400:329
    [55] ZLOTNIK E Y, KLASSEN A, KLEIN K L, et al. Third harmonic plasma emission in solar type II radio bursts[J]. Astron. Astrophys., 1998, 331(3):1087-1098
    [56] CANE H V. Two components in major solar particle events[J]. Geophys. Res. Lett., 2003, 30(12):8017
    [57] LI G, ZANK G P. Mixed particle acceleration at CME-driven shocks and flares[J]. Geophys. Res. Lett., 2005, 32:02101
    [58] MA S L, RAYMOND J C, GOLUB L, et al. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA[J]. Astrophys. J., 2011, 738:160
    [59] KOHL J L, GIANCARLO N, STEVEN R C, et al. Ultraviolet spectroscopy of the extended solar corona[J]. Astron. Astrophys. Rev., 2006, 13:31
    [60] MANCUSO S, RAYMOND J C, KOHL J, et al. UVCS/SOHO observations of a CME-driven shock:Consequences on ion heating mechanisms behind a coronal shock[J]. Astron. Astrophys., 2002, 383:267-274
    [61] BEMPORAD A, MANCUSO S. First complete determination of plasma physical parameters across a coronal mass ejection-driven shock[J]. Astrophys. J., 2010, 720:130-143
    [62] WANG H J, SHEN C C, LIN J. Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration[J]. Astrophys. J., 2009, 700:1716
    [63] WANG H J, LIU S Q, GONG J C, et al. Contribution of velocity vortices and fast shock reflection and refraction to the formation of EUV waves in solar eruptions[J]. Astrophys. J., 2015, 805:114
    [64] PARKER E N. Nanoflares and the solar X-ray corona[J]. Astrophys. J., 1988, 330:474-479
    [65] RAPPAZZO A F, VELLI M, EINAUDI G, et al. Nonlinear dynamics of the Parker scenario for coronal heating[J]. Astrophys. J., 2008, 677:1348-1366
    [66] BRADSHAW S J, KLIMCHUK J A. Chromospheric nanoflares as a source of coronal plasma. II. repeating nanoflares[J]. Astrophys. J., 2015, 811:129
    [67] CRANMER S R, VAN BALLEGOOIJEN A A, EDGAR R J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence[J]. Astrophys. J. Suppl. Ser., 2007, 171:520-551
    [68] ASGARI-TARGHI M, VAN BALLEGOOIJEN A A, CRANMER S R, et al. The spatial and temporal dependence of coronal heating by Alfvén wave turbulence[J]. Astrophys. J., 2013, 773:111
    [69] VAN BALLEGOOIJEN A A, ASGARI-TARGHI M, VOSS A. The heating of solar coronal loops by Alfvén wave turbulence[J]. Astrophys. J., 2017, 849:46
    [70] CIRTAIN J W, GOLUB L, WINGEBARGER A, et al. Energy release in the solar corona from spatially resolved magnetic braids[J]. Nature, 2013, 493:501-503
    [71] TESTA P, DE PONTIEU B, ALLRED J, et al. Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares[J]. Science, 2014, 346:1255724
    [72] TIAN H, LI G, REEVES K K, et al. Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare[J]. Astrophys. J. Lett., 2014, 797(2):14
    [73] QIU J, WANG H M, CHENG C Z, et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events[J]. Astrophys. J., 2004, 604(2):900
    [74] YANG Z H, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369:694-697
    [75] FARRELL W M, THOMPSON R F, LEPPING R P, et al. A method of calibrating magnetometers on a spinning spacecraft[J]. IEEE T rans. Magn., 1995, 31(2):966-972
    [76] ZHANG S Y, ZHANG X G, WANG C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite[J]. Sci. China:Earth Sci., 2014, 57:2558-2566(张#
    [77] MANN I, KIMURA H, BIESECKER D A, et al. Dust near the sun[J]. Space Sci. Rev., 2004, 110:269
    [78] RAYMOND J C, FINESCHI S, SMITH P L, et al. Solar wind at 6.8 solar radii from UVCS observation of comet C/1996Y1[J]. Astrophys. J., 1998, 508:410
    [79] MIZUTANI K, MAIHARA T, HIROMOTO N, et al. Near-infrared observation of the circumsolar dust emission during the 1983 solar eclipse[J]. Nature, 1984, 312(5990):134-136
    [80] BEMPORAD A, POLETTO G, RAYMOND J, et al. UVCS observation of sungrazer C/2001 C2:possible comet fragmentation and plasma-dust interactions[J]. Astrophys. J., 2005, 620(1):523-536
    [81] BEMPORAD A, GIORDANO S, RAYMOND J C, et al. Study of sungrazing comets with space-based coronagraphs:new possibilities offered by METIS on board Solar Orbiter[J]. Adv. Space Res., 2015, 56(10):2288-2297
    [82] BEMPORAD A, POLETTO G, RAYMOND J, et al. A review of SOHO/UVCS observations of sungrazing comets[J]. Planet. Space Sci., 2007, 55(9):1021-1030
  • 加载中
计量
  • 文章访问数:  244
  • HTML全文浏览量:  12
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-12
  • 修回日期:  2021-02-25
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回