留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁鞘快速流引起的磁层顶凹陷事件

宋小健 左平兵 周梓露

宋小健, 左平兵, 周梓露. 磁鞘快速流引起的磁层顶凹陷事件[J]. 空间科学学报, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234
引用本文: 宋小健, 左平兵, 周梓露. 磁鞘快速流引起的磁层顶凹陷事件[J]. 空间科学学报, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234
SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234
Citation: SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234

磁鞘快速流引起的磁层顶凹陷事件

doi: 10.11728/cjss2021.02.234
基金项目: 

国家自然科学基金项目(41731067)和深圳市科创委基础研究项目(JCYJ20170307150645407,JCYJ20180306171748011)共同资助

详细信息
    作者简介:

    宋小健,E-mailsxjsgl@mail.ustc.edu.cn

  • 中图分类号: P353

Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize

  • 摘要: 最近研究表明,磁层顶凹陷对磁层-电离层耦合具有重要作用.但是,磁层顶凹陷现象的确认需要多颗卫星的联合观测,目前为止报道的磁层顶凹陷事例非常少.本文利用THEMIS5颗卫星的联合观测结果,分析了一例由磁鞘快速流引起的磁层顶凹陷事件.2007年7月21日10:00 UT—10:45 UT,位于日下点磁层顶附近的THEMIS卫星在磁鞘观测到很强的地向流(约400km·-1),随后THEMIS5颗卫星相继穿越磁层顶进入磁层.通过最小方差MVA方法确认局部磁层顶法向,与经典磁层顶模型比较发现,磁鞘快速流压缩磁层顶形成局部凹陷.为了探究此磁鞘快速流的起源,对位于L1点的WIND卫星观测到的太阳风数据进行分析发现:在这个时间段内太阳风条件非常稳定,行星际磁场主要为径向,磁场南北向分量非常小.由此推测此磁鞘快速流的产生很可能与径向行星际磁场有关.

     

  • [1] CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
    [2] HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monogr. Environ. Earth Planets, 2012, 1(2):71-119
    [3] SPREITER J R, BRIGGS B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67(1):37-51
    [4] PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear:1. Structure and motion[J]. J. Geophys. Res.:Space Phys., 1996, 101(A4):7801-7815
    [5] SHUE J H, CHAO J K, SONG P, et al. Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields[J]. Geophys. Res. Lett., 2009, 36(18):18112
    [6] JELINEK K, NEMECEK Z, SAFRANKOVA J, et al. Thin magnetosheath as a consequence of the magnetopause deformation:THEMIS observations[J]. J. Geophys. Res.:Space Phys., 2010, 115(A10):A10203
    [7] FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76(28):6700-6716
    [8] PETRINEC S P, SONG P, RUSSELL C T. Solar-cycle variations in the size and shape of the magnetopause[J]. J. Geophys. Res.:Space Phys., 1991, 96(A5):7893-7896
    [9] SHUE J H, CHAO J K, FU H C, et al. A new functional form to study the solar wind control of the magnetopause size and shape[J]. J. Geophys. Res., 1997, 102(A5):9497-9511
    [10] SONG P, DEZEEUW D L, GOMBOSI T I, et al. A numerical study of solar wind——magnetosphere interaction for northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 1999, 104(A12):28361-28378
    [11] FAIRFIELD D H, BAUMJOHANN W, PASCHMANN G, et al. Upstream pressure variations assocated with the bow shock and their effects on the magnetosphere[J]. J. Geophys. Res.:Space Phys., 1990, 95(A4):3773-3786
    [12] FUJITA S, GLASSMEIER K H, KAMIDE K. MHD waves generated by the Kelvin-Helmholtz instability in a nonuniform magnetosphere[J]. J. Geophys. Res.:Space Phys., 1996, 101(A12):27317-27325
    [13] GLASSMEIER K H, HEPPNER C. Traveling magnetospheric convection twin vortices-another case study, global characteristics, and a model[J]. J. Geophys. Res.:Space Phys., 1992, 97(A4):3977-3992
    [14] PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves:THEMIS observations compared to MHD theory[J]. J. Geophys. Res.:Space Phys., 2013, 118(4):1483-1499
    [15] WNAG S, ZONG Q G, ZHANG H. Cases and statistical study on hot flow anomalies with Cluster spacecraft data[J]. Sci. China Tech. Sci., 2012, 42(7):737-754(汪珊, 宗秋刚, 张慧. 基于Cluster卫星观测的太阳风热流异常事件的分析研究[J]. 中国科学:技术科学, 2012, 42(7):737-754)
    [16] DMITRIEV A V, SUVOROVA A V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet:THEMIS and ground-based observations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A8):A08217
    [17] SIBECK D G, BORODKOVA N L, SCHWARTZ S J, et al. Comprehensive study of the magnetospheric response to a hot flow anomaly[J]. J. Geophys. Res., 1999, 104(A3):4577-4593
    [18] TKACHENKO O, SAFRANKOVA J, NEMECEK Z, et al. Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation[J]. Ann. Geophys., 2011, 29(4):687-699
    [19] ELSEN R K, WINGLEE R M. The average shape of the magnetopause:a comparison of three-dimensional global MHD and empirical models[J]. J. Geophys. Res.:Space Phys., 1997, 102(A3):4799-4819
    [20] SOTIRELIS T, MENG C I. Magnetopause from pressure balance[J]. J. Geophys. Res.:Space Phys., 1999, 104(A4):6889-6898
    [21] DMITRIEV A V, SUVOROVA A V. Three-dimensional artificial neural network model of the dayside magnetopause[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18909-18918
    [22] WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. J. Geophys. Res., 1997, 102(A7):14255-14268
    [23] HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. J. Geophys. Res.:Space Phys., 2015, 120(9):7447-7465
    [24] HAN D S, NISHINURA Y, LYONS L R, et al. Throat aurora:the ionospheric signature of magnetosheath particles penetrating into the magnetosphere[J]. Geophys. Res. Lett., 2016, 43(5):1819-1827
    [25] HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. J. Geophys. Res.:Space Phys., 2018, 123(4):2658-2667
    [26] HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1853-1870
    [27] SONNERUP B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[M]//Analysis Methods for Multi*spacecraft Data. Netherlands:ESA Publications Division, 1998:185-220
    [28] SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res.:Space Phys., 1998, 103(A8):17691-17700
    [29] NEUGEBAUER M, ALEXANDER C. Shuffling foot points and magnetohydrodynamic discontinuities in the solar wind[J]. J. Geophys. Res. Atmosphys., 1991, 96 (A6):9409-9418
    [30] Phan T D, EASTWOOD J P, SHAY M A, et al. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath[J]. Nature, 2018, 557(7704):202-206
    [31] PHAN T D, LOVE T E, GOSLING J T, et al. Triggering of magnetic reconnection in a magnetosheath current sheet due to compression against the magnetopause[J]. Geophys. Res. Lett., 2011, 38(17):L17101
    [32] LIN Y, LEE L C, YAN M. Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation[J]. J. Geophys. Res.:Space Phys., 1996, 101(A1):479-493
    [33] STERCK D H, LOW B C, POEDTS S. Complex magnetohydrodynamic bow shock topology in field-aligned low-be flow around a perfectly conducting cylinder[J]. Phys. Plasmas, 1998, 5:4015-4027
    [34] LIN Y. Generation of anomalous flows near the bow shock by its interaction with interplanetary discontinuities[J]. J. Geophys. Res.:Space Phys., 1997, 102(A11):24265-24281
    [35] CABLE S, LIN Y, HOLLOWAY J L. Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts[J]. J. Geophys. Res.:Space Phys., 2007, 112(A9):A12299
  • 加载中
计量
  • 文章访问数:  488
  • HTML全文浏览量:  53
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-18
  • 修回日期:  2020-03-06
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回