留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体鞘层效应对磁层探测电场仪设计的影响

刘吉 周斌 李磊 冯永勇 张艺腾 叶建成

刘吉, 周斌, 李磊, 冯永勇, 张艺腾, 叶建成. 等离子体鞘层效应对磁层探测电场仪设计的影响[J]. 空间科学学报, 2021, 41(2): 242-249. doi: 10.11728/cjss2021.02.242
引用本文: 刘吉, 周斌, 李磊, 冯永勇, 张艺腾, 叶建成. 等离子体鞘层效应对磁层探测电场仪设计的影响[J]. 空间科学学报, 2021, 41(2): 242-249. doi: 10.11728/cjss2021.02.242
LIU Ji, ZHOU Bin, LI Lei, FENG Yongyong, ZHANG Yiteng, YIE Jiancheng. Effect of Plasma Sheath on the Design of Electric Field Instrument Detecting Magnetosheathormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 242-249. doi: 10.11728/cjss2021.02.242
Citation: LIU Ji, ZHOU Bin, LI Lei, FENG Yongyong, ZHANG Yiteng, YIE Jiancheng. Effect of Plasma Sheath on the Design of Electric Field Instrument Detecting Magnetosheathormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 242-249. doi: 10.11728/cjss2021.02.242

等离子体鞘层效应对磁层探测电场仪设计的影响

doi: 10.11728/cjss2021.02.242
基金项目: 

国家重点研发计划项目(2016YFB0501503)和山东省光学天文与日地环境重点实验室基金项目共同资助

详细信息
    作者简介:

    刘吉,E-mail:liuji16@mails.ucas.ac.cn

    通讯作者:

    冯永勇,E-mail:fengyy@nssc.ac.cn

  • 中图分类号: P353

Effect of Plasma Sheath on the Design of Electric Field Instrument Detecting Magnetosheathormalsize

  • 摘要: 在空间环境探测中,卫星与等离子体的相互作用会改变背景环境的粒子和电位的分布,从而影响探测器对空间电场的测量.为了给磁层卫星电场探测仪器的研制和设计提供参考,本文以中国未来的磁层电离层探测为背景,针对不同轨道高度的等离子体环境,利用SPIS(Spacecraft Plasma Interaction Software)模拟了卫星平台和探针与等离子体的相互作用,从而得到了不同环境下卫星周围等离子体鞘层的厚度,以及探针电位与电流的对应关系.模拟结果表明:由于光电子和二次电子的影响,卫星鞘层的厚度小于等离子体的德拜半径,且温度越高其偏差越大;模拟得到的探针表面电流与电位的关系表明,施加偏置电流的探针可明显提高对电流扰动的抗干扰能力.此外,估计了不同轨道高度上探针处于最佳工作点时应施加偏置电流的大小.

     

  • [1] DAGLIS I A. Space Storms and Space Weather Hazards[M]. The Netherlands:Kluwer Academic Publishers, 2001
    [2] LIU Z X, ESCOUBET C P, PU Z, et al. The double star mission[J]. Ann. Geophys., 2005, 23(8):2707-2712
    [3] NYKYRI K, OTTO A, ADAMSON E, et al. On the origin of high-energy particles in the cusp diamagnetic cavity[J]. J. Atmos. Sol.:Terr. Phys., 2012, 87-88(12):70-81
    [4] KEIKA K, KISTLER L M, BRANDT P C. Energization of O+ ions in the Earth's inner magnetosphere and the effects on ring current buildup:a review of previous observations and possible mechanisms[J]. J. Geophys. Res. Space Phys., 2013, 118(7):4441-4464
    [5] DUNGEY J W. Interplanetary magnetic field and the auroral zones[J]. Phys. Rev. Lett., 1961, 6(2):47-48
    [6] LINDQVIST P A, OLSSON G, TORBERT R B, et al. The spin-plane double probe electric field instrument for MMS[J]. Space Sci. Rev., 2014, 199(1/2/3/4):137-165
    [7] BALE S D, GOETZ K, HARVEY P R, et al. The FIELDS instrument suite for solar probe plus[J]. Space Sci. Rev., 2016, 204(1/2/3/4):49-82
    [8] FAHLESON U. Theory of electric field measurements conducted in the magnetosphere with electric probes[J]. Space Sci. Rev., 1967, 7(2/3):238-262
    [9] BI Jiayi, LI Lei. Simulations of the spacecraft charging and wake effects in the solar wind[J]. Chin. J. Space Sci., 2018, 38(6):909-914 (毕嘉眙, 李磊. 太阳风中航天器与尾迹效应的模拟[J]. 空间科学学报, 2018, 38(6):909-914)
    [10] MOZER F S. Analyses of techniques for measuring DC and AC electric fields in the magnetosphere[J]. Space Sci. Rev., 1973, 14(2):272-313
    [11] ENGWALL E, ERIKSSON A I. Double-probe measurements in cold tenuous space plasma flows[J]. IEEE Trans. Plasma Sci., 2006, 34(5):2071-2077
    [12] YANG Xuan, ZHOU Bin, WENG Chenghan. Research on the data correction method of the electric field instrument onboard spin platform[J]. Chin. J. Space Sci., 2018, 38(3):386-392 (杨璇, 周斌, 翁成翰. 自旋平台双球型电场仪数据校正方法[J]. 空间科学学报, 2018, 38(3):386-392)
    [13] BONNELL J W, MOZER F S, DELORY G T, et al. The Electric Field Instrument (EFI) for THEMIS[J]. Space Sci. Rev., 2008, 141(1/2/3/4):303-341
    [14] HARVEY P, MOZER F S, PANKOW D, et al. The electric field instrument on the polar satellite[J]. Space Sci. Rev., 1995, 71(1):583-596
    [15] MOTT-SMITH H M, LANGMUIR I. The theory of collectors in gaseous discharges[J]. Phys. Rev., 1926, 28(4):727-763
    [16] MEDICUS G. Spherical Langmuir probe in "Drifting" and "Accelerated" Maxwellian distribution[J]. J. Appl. Phys., 1962, 33(10):3094-3100
    [17] GRARD R J L. Properties of the satellite photoelectron sheath derived from photoemission laboratory measurements[J]. J. Geophys. Res., 1973, 78(16):2885-2906
    [18] MANDELL M J, DAVIS V A, COOKE D L, et al. Nascap-2k spacecraft charging code overview[J]. IEEE Trans. Plasma Sci., 2006, 34(5):2084-2093
    [19] MIYAKE Y, USUI H. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions[J]. Phys. Plasmas, 2009, 16(6):134
    [20] LAPENTA G, BRACKBILL J U, RICCI P. Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas[J]. Phys. Plasmas, 2006, 13(5).DOI: 10.1063/1.2173623
    [21] ROUSSEL J F, ROGIER F, DUFOUR G, et al. SPIS open-source code:methods, capabilities, achievements, and prospects[J]. IEEE Trans. Plasma Sci., 2008, 36(5):2360-2368
    [22] TORKAR K, NAKAMURA R, TAJMAR M, et al. Active spacecraft potential control investigation[J]. Space Sci. Rev., 2014, 199(1/2/3/4):515-544
    [23] LI Cheng, WANG Zuolei, MA Mianjun, et al. Photoelectric characteristics of coatings on spherical sensor for space electric field detection[J]. Chin. J. Vacuum Sci. Technol., 2016, 36(2):223-228
    [24] DECA J, LAPENTA G, MARCHAND R, et al. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D[J]. Phys. Plasmas, 2013, 20(10):651-1250
    [25] LIU Yong, WANG Chi, XU Jiyao, et al. Brief Introduction of magnetosphere-ionosphere-thermosphere coupling small satellite constellation exploration plan[J]. Space Int., 2016, 9:54-60
    [26] MANDELL M J, STANNARD P R, KATZ I. NASCAP programmer's reference manual[J]. Final Rep., 1993, 4(5/6):393-395
  • 加载中
计量
  • 文章访问数:  449
  • HTML全文浏览量:  60
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-04-26
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回