留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kalman滤波估算电离层延迟的一种优化方法

薛伟峰 倪育德

薛伟峰, 倪育德. Kalman滤波估算电离层延迟的一种优化方法[J]. 空间科学学报, 2021, 41(2): 273-278. doi: 10.11728/cjss2021.02.273
引用本文: 薛伟峰, 倪育德. Kalman滤波估算电离层延迟的一种优化方法[J]. 空间科学学报, 2021, 41(2): 273-278. doi: 10.11728/cjss2021.02.273
XUE Weifeng, NI Yude. Optimization of Kalman Filtering in Estimating Ionospheric Delay[J]. Journal of Space Science, 2021, 41(2): 273-278. doi: 10.11728/cjss2021.02.273
Citation: XUE Weifeng, NI Yude. Optimization of Kalman Filtering in Estimating Ionospheric Delay[J]. Journal of Space Science, 2021, 41(2): 273-278. doi: 10.11728/cjss2021.02.273

Kalman滤波估算电离层延迟的一种优化方法

doi: 10.11728/cjss2021.02.273
基金项目: 

国家重点基础研究发展计划项目资助(2016YFB0502402)

详细信息
    作者简介:

    薛伟峰,E-mail:625909732@qq.com

  • 中图分类号: TN967.1

Optimization of Kalman Filtering in Estimating Ionospheric Delay

  • 摘要: 频间偏差(Inter Frequency Bias,IFB)通常会给电离层延迟的解算带来误差.目前从电离层延迟中消除频间偏差的方法是基于GPS双频观测数据建立垂直电离层模型,利用卡尔曼滤波实时估算电离层模型系数和频间偏差.然而滤波过程中的测量噪声协方差矩阵没有考虑系统观测量之间的相关性,这会导致滤波模型不准确,进而影响最后求解的电离层延迟的准确性.本文选取了美国19个参考站的GPS双频观测数据,利用卡尔曼滤波实时估算电离层模型系数以及频间偏差.在滤波过程中,通过将先验频间偏差的估计方差引入测量噪声方差,实现对测量噪声协方差矩阵的优化.计算结果表明,优化后得到的卫星频间偏差与欧洲定轨中心(Center for Orbit Determination in Europe,CODE)得到的频间偏差更接近.将优化后的电离层延迟代入伪距解算,得到的位置误差的标准差在东向和天顶向分别下降了12.5%和15.4%,天顶向误差平均值下降了17.6%,定位精度得到提高.

     

  • [1] WANG N, YUAN Y, LI Z, et al. Determination of differential code biases with multi-GNSS observations[J]. J. Geodesy., 2016, 90(3):209-228
    [2] ARIKAN F, NAYIR H, SEZEN U, et al. Estimation of single station interfrequency receiver bias using GPS-TEC[J]. Radio Sci., 2008, 43(4):1-13
    [3] YUAN Yunbin, OU Jikun. The influence of instrument deviation in GPS observation data on determining ionospheric delay and processing method[J]. Acta Geod. Cartograph. Sin., 1999, 28(2):110-114 (袁运斌, 欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方 法[J]. 测绘学报, 1999, 28(2):110-114)
    [4] MANUEL Hernández-Pajares, JUAN J M, SANZ J, et al. The ionosphere:effects, GPS modeling and the benefits for space geodetic techniques[J]. J. Geodesy., 2011, 85(12):887-907
    [5] WANG Xiaolan, MA Guanyi. Ionospheric TEC and hardware delay inversion method based on dual-frequency GPS observation[J]. Chin. J. Space Sci., 2014, 34(2):168-179 (王晓岚, 马冠一. 基于双频GPS 观测的电离层TEC与硬件延迟反演方法[J]. 空间科学学报, 2014, 34(2):168-179)
    [6] CHANG Qing, ZHANG Donghe, XIAO Zuo, et al. Hardware delay estimation method for GPS system and its application in TEC calculation[J]. Chin. J. Geophys., 2001, 44(5):596-601 (常青, 张东和, 萧佐, 等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J]. 地球物理学报, 2001, 44(5):596-601)
    [7] LANYI G E, ROTH T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio Sci., 1988, 23(4):483-492
    [8] SARDÓN E, RIUS A, ZARRAOA N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [9] SCHAER S. Mapping and Predicting the Earths Ionosphere Using the Global Positioning System[D]. Bern:University of Bern, 1999
    [10] LI Z, YUAN Y, FAN L, et al. Determination of the differential code bias for current BDS satellites[J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(7):3968-3979
    [11] LEE H K, RIZOS C. Position-domain hatch filter for kinematic differential GPS/GNSS[J]. IEEE Trans. Aerosp. Electron. Syst., 2004, 44(1):30-40
    [12] YICHUNG C. Real Time Implementation of the Wide Area Augmentation System for the Global Positioning System with an Emphasis on Ionospheric Modeling[D]. Stanford:Stanford University, 1997
    [13] GENG Changjiang, ZHANG Hongping, ZHAI Chuanrun. Real time estimation of dcb using Kalman filters[J]. Geomat. Inf. Sci. Wuhan Univ., 2009, 34(11):1309-1311 (耿长江, 章红平, 翟传润. 应用Kalman 滤波实时求解硬件延迟[J]. 武汉大学学报:信息科学版, 2009, 34(11):1309-1311)
    [14] ANDRÉ Hauschild, MONTENBRUCK O. A study on the dependency of GNSS pseudorange biases on correlator spacing[J]. GPS Solut., 2016, 20(2):159-171
    [15] CHUI C K, CHEN G. Kalman filtering with real time applications[J]. Appl. Opt., 1989, 28:1841
    [16] ZHANG Hongping. Research on Regional Ionospheric Monitoring and Delay Correction Based on Ground-based GPS[D]. Shanghai:Graduate School of Chinese Academy of Sciences, 2006 (章红平. 基于地基GPS的中国区域电离层监测与延迟改正研究[D]. 上海:中国 科学院研究生院, 2006)
    [17] BLANCH J, WALTER T, ENGE P. Ionospheric threat model methodology for WAAS[J]. Navigation, 2002, 49(2):103-107
    [18] SIMON D. Kalman filtering with state constraints:a survey of linear and nonlinear algorithms[J]. IET Control Theory Appl., 2010, 4(8):1303-1318
    [19] SIMON D, CHIA T L. Kalman filtering with state equality constraints[J]. IEEE Trans. Aerosp. Electron. Syst., 2002, 38(1):128-136
    [20] ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Precise single point localization algorithm based on GPS dual-frequency original observation and its application[J]. Acta Geod. Cartograph. Sin., 2010, 39(5):478-483 (张宝成, 欧吉坤, 袁运斌, 等. 基于GPS双频原 始观测值的精密单点定位算法及应用[J]. 测绘学报, 2010, 39(5):478-483)
  • 加载中
计量
  • 文章访问数:  174
  • HTML全文浏览量:  4
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-19
  • 修回日期:  2020-05-05
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回