留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间微生物实验技术研究进展

袁俊霞 印红 马玲玲 张文德 张秦 徐侃彦

袁俊霞, 印红, 马玲玲, 张文德, 张秦, 徐侃彦. 空间微生物实验技术研究进展[J]. 空间科学学报, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286
引用本文: 袁俊霞, 印红, 马玲玲, 张文德, 张秦, 徐侃彦. 空间微生物实验技术研究进展[J]. 空间科学学报, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286
YUAN Junxia, YIN Hong, MA Lingling, ZHANG Wende, ZHANG Qin, XU Kanyan. Research Progress of Space Microbial Experimental Technologiesormalsize[J]. Journal of Space Science, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286
Citation: YUAN Junxia, YIN Hong, MA Lingling, ZHANG Wende, ZHANG Qin, XU Kanyan. Research Progress of Space Microbial Experimental Technologiesormalsize[J]. Journal of Space Science, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286

空间微生物实验技术研究进展

doi: 10.11728/cjss2021.02.286
基金项目: 

民用航天技术预先研究项目(B0107)和中国航天科技集团有限公司自主研发项目共同资助

详细信息
    作者简介:

    袁俊霞,E-mail:yuanjunxia@cast.cn

  • 中图分类号: V524.1;Q939.99

Research Progress of Space Microbial Experimental Technologiesormalsize

  • 摘要: 微生物具有结构简单、生长周期短、繁殖快、便于搭载等优点,被作为生物模型用于空间环境下的生命现象研究、地外生命探测以及开展以微生物为重点关注对象的行星保护任务研究.随着中国空间站在轨建造任务的临近,微生物空间实验技术开发以及相应的实验装置研制需要加快部署.本文以已实现空间应用的微生物技术为基础,从微生物空间培养、保存、检测技术及用于地外生命探测中的微生物识别技术等方面分析了空间微生物实验技术的发展现状与趋势,提出了未来利用中国空间站开展空间微生物实验的技术发展建议.

     

  • [1] BAQUE M, VERSEUX C, RABBOW E, et al. Detection of macromolecules in desert cyanobacteria mixed with a lunar mineral analogue after space simulations[J]. Orig. Life. Evol. Biosph., 2014, 44:209-221
    [2] FAJARDO-CAVAZOS P, LEEHAN J D, NICHOLSON W L. Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilisrpoB gene after cultivation in the human spaceflight environment[J]. Front. Microbiol., 2018, 9:192
    [3] HORNECK G, MOELLER R, CADET J, et al. Resistance of bacterial endospores to outer space for planetary protection purposes-experiment PROTECT of the EXPOSE-E mission[J]. Astrobiology, 2012, 12(5):445-456
    [4] BLABER E, DVOROCHKIN N, ALMEIDA E, et al. Bioculture system:expanding ISS space bioscience capabilities for fundamental stem cell research and space biosciences research and commercial applications[C]//40th COSPAR Scientific Assembly. Moscow:NASA, 2014
    [5] SATO K Y, ALMEIDA E, AUSTIN E M. NASA Bioculture System:from Experiment Definition to Flight Payload[R]. NASA technical reports, ARC-E-DAA-TN16080, 2014
    [6] KAROUIAF F, PEYVAN K, POHORILLE A. Toward biotechnology in space:high-throughput instruments for in situ biological research beyond earth[J]. Biotechnol. Adv., 2017, 35:905-932
    [7] FAJARDO-CAVAZOS P, NICHOLSON W L. Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoBgene[J]. Front. Microbiol., 2016, 7:999
    [8] 18-0061-0
    [9] KLAUS D M, HOWARD H N. Antibiotic efficacy and microbial virulence during space flight[J]. Trends Biotechnol., 2006, 24(3):131-136
    [10] KIM W, TENGRA FK, YOUNG Z, et al. Spaceflight promotes biofilm formation by pseudomonas aeruginosa[J]. PLoS One, 2013, 8(4).DOI: 10.1371/journal.pone.0062437
    [11] CRABBE A, DE BOEVER P, VAN HOUDT R, et al. Use of the rotating wall vessel technology to study the effect of shear stress on growth behavior of pseudomonasaeruginosa PA01[J]. Environ. Microbiol., 2008, 10(8):2098-2110
    [12] DALAL S, SANTA MARIA S R, LIDDELL L, et al. Biosentinel:improving desiccation tolerance of Yeast biosensors for deep-space missions[C]//33rd American Society for Gravitational and Space Research (ASGSR) Annual Meeting. Seattle:NASA, 2017
    [13] BRILLOUET C, BRIGANTI L, SCHWARZWALDER A. ESA experiments with the European modular cultivation system (EMCS)[C]//Proceedings of the Life in Space for Life on Earth Symposium. Angers:ESA Publication Division, 2008
    [14] EVERROAD C.Long-term multi-generational evolutionary studies of bacteria in the spaceflight environment (MVP-Cell-02)[R]. NASA technical reports, ARC-E-DAA-TN65372, 2019
    [15] NICHOLSON W L, MOELLEER R, HORNECK G. Transcriptomic responses of germinating Bacillussubtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT[J]. Astrobiology, 2012, 12(5):469-486
    [16] ONOFRI S, DE VERA J P, ZUCCONI L, et al. Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the international space station[J]. Astrobiology, 2015, 15(12):1052-1059
    [17] MATTIODA A, COOK A, EHRENFREUND P, et al. The O/OREOS mission:first science data from the Space Environment Viability of Organics (SEVO) payload[J]. Astrobiology, 2012, 12(9):841-853
    [18] PAUL A L, FERL R J. Using Green Fluorescent Protein (GFP) reporter genes in RNA Later fixed tissue[J]. Gravit. Space Biol., 2011, 25(1):40-43
    [19] KIMW, TENGRA F K, YOUNG Z, et al. Spaceflight promotes biofilm formation by pseudomonas aeruginosa[J]. PLoS One, 2013. DOI: 10.1371/journal.pone.0062437
    [20] JOHNSON M D. NanoRacks, LLC Commercial Contributions to the US ISS National Laboratory Biological Research Facilities[R]. Texas:NanoRacks LLC, 2011
    [21] MORRIS H C, DAMON M, MAULE J, et al. Rapid culture-independent microbial analysis aboard the International Space Station (ISS)[J]. Astrobiology, 2012, 12(9):830-840
    [22] DAS A P, KUMAN PS, SWAIN S. Recent advances in biosensor based endotoxin detection[J]. Biosens. Bioelectron., 2013, 51:62-75
    [23] KAROUIA F, PEYVAN K, RICCO A, et al. Biological validation of the Gene Expression Measurement Module (GEMM) for microbial gene expression in space[C]//Astrobiology Science Conference. Chicago:NASA, 2015
    [24] CREWS N, WITTWER C, GALE B. Continuous-flow thermal gradient PCR[J]. Biomed. Microdevices, 2008, 10(2):187-195
    [25] MABILAT C, ABAIBOU H, LINDNER R, et al. Current Progresses of Midass:the European project for an Automated Microbial Identification Instrument[R]. California:NASA'S AMES Research Center, 2015
    [26] BECHY-LOIZEAU A L, FLANDROIS J P, ABAIBOU H. Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS[J]. Life Sci. Space Res., 2015, 6:29-35
    [27] ADAMSKI M G, GUMANN P, BARID A E. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity[J]. PLoS One, 2014.DOI: 10.1371/journal.pone.0103917
    [28] PARRA M, SCHONFELD J. WetLab-2:Wet lab RNA Smart Cycler providing PCR capability on ISS[C]//Joint CSA/ESA/JAXA/NASA Increments 43 and 44 Science Symposium. California:NASA'S Ames Research Center, 2015
    [29] OUBRE C M, BIRMELE M N, CASTRO V A, et al. Microbial monitoring of common opportunistic pathogens by comparing multiple Real-Time PCR platforms for potential space applications[C]//43rd International Conference on Environmental Systems. Colorado:NASA, 2013
    [30] DUC MTL, OSMAN S, VAISHAMPAYAN P, et al. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods[J]. Appl. Environ. Microbiol., 2009, 75(20):6559-6567
    [31] THISSEN J B, MCLOUGHLIN K, GARDNER S, et al. Analysis of sensitivity and rapid hybridization of a multiplexed microbial detection microarray[J]. J. Virol. Methods, 2014, 201:73-78
    [32] MCINTYRE A B R, RIZZARDI L, YU A M, et al. Nanopore sequencing in microgravity[J]. NpjMicrograv., 2016, 2:16035
    [33] CASTRO-WALLACE S, CHIU C Y, JOHN K K, et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Sci. Rep., 2017, 7:18022
    [34] WANG Haiming. "Genes in Space-3" experiment succeeded in identification of microorganisms in ISS[J]. Chin. J. Space Sci., 2018, 38(2):135-135
    [35] WALTHER T C, MANN M. Mass spectrometry-based proteomics in cell biology[J]. J. Cell Biol., 2010, 190(4):491-500
    [36] FREISSINET C, GLAVIN D P, MAHAFFY P R, et al. Organic molecules in the Sheep bed mudstone, Gale Crater, Mars[J]. J. Geophys. Res. Planet., 2015, 120(3) 495-514
    [37] SMITH S A, BENARDINI J N, AANDERL D, et al. Identification and characterization of early mission phase microorganisms residing on the Mars science laboratory and assessment of their potential to survive Mars-like conditions[J]. Astrobiology, 2017, 17(3):253-265
    [38] PARRO V, DE DIEGO-CASTILLA G, MORENO-PZA M, et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip:implications for the search for life on Mars[J]. Astrobiology, 2011, 11(10):969-996
    [39] PARRO V, DE DIEGO-CASTILLA G, RODRIGUEZ-MANFREDI J A, et al. SOLID3:a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration[J]. Astrobiology, 2011, 11(1):15-28
    [40] CARR C E, MOJARRO A, TANI J, et al. Advancing the search for extra-terrestrial genomes[C]//IEEE Aerospace Conference. Montana:Institute of Electrical and Electronics Engineers, 2016
  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  7
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-08-06
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回