[1] |
WANG Jia, WU Weiren, LI Jian, et al. Vision based Chang'E-4 landing point localization[J]. Sci. Sin. Tech., 2020, 50:41-53 (王镓, 吴伟仁, 李剑, 等. 基于视觉的嫦娥四号探测器着陆点 定位[J]. 中国科学:技术科学, 2020, 50:41-53)
|
[2] |
DI Kaichang, LIU Zhaoqin, LIU Bin, et al. Chang'E-4 lander localization based on multi-source data[J]. J. Remote Sens., 2019, 23(1):177-184. (邸凯昌, 刘召芹, 刘斌等. 多源数据的 嫦娥四号着陆点定位[J]. 遥感学报, 2019, 23(1):177-184)
|
[3] |
LIU Jianjun, REN Xin, YAN Wei, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Commun., 2019, 10(1):4229
|
[4] |
WAN Wenhui, LIU Zhaoqin, LIU Yiliang, et al. Descent image matching based position evaluation for Chang'E-3 landing point[J]. Spacecraft Eng., 2014, 23(4):5-12 (万文辉, 刘召芹, 刘一良, 等. 基于降落图像匹配的嫦娥三号着陆点位置评估[J]. 航天器工程, 2014, 23(4):5-12)
|
[5] |
JIA Yang, LIU Shaochuang, LI Minglei, et al. Chang'E-3 system pinpoint landing localization based on descent image sequence[J]. Chin. Sci. Bull., 2014, 59:1838-1843 (贾阳, 刘少创, 李明磊, 等. 利用降落影像序列实现嫦娥三号系统着陆点高精度定位[J]. 科学通报, 2014, 59:1838-1843)
|
[6] |
NASA Images of Chang'E-3 Landing Site[EB/OL]. NASA/GSFC/Arizona State University.[2014-01-23]. http://www.nasa.gov/content/nasa-images-of-change-3-landing-site/
|
[7] |
WAGNER R V, ROBINSON M S, SPEYERER E J, et al. Locations of anthropogenic sites on the Moon[C]//45th Lunar & Planetary Science Conference. The Woodlands, Texas:Universities Space Research Association, 2014:225
|
[8] |
LIU Bin, DI Kaichang, WANG Baofeng, et al. Positioning and precision validation of Chang'E-3 Lander based on multiple LRO NAC images[J]. Chin. Sci. Bull., 2015, 60:2750-2757 (刘斌, 邸凯 昌, 王保丰, 等. 基于LRO NAC影像的嫦娥三号着陆点高精度定位与精度验证[J]. 科学通报, 2015, 60:2750-2757)
|
[9] |
LI CHunlai, LIU Jianjun, REN Xin, et al. Lunar Global High-precision terrain reconstruction based on Chang'E-2 stereo images[J]. Geomat. Inform. Sci. Wuhan Univ., 2018, 43(4):485-495 (李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月 高精度地形重建[J]. 武汉大学学报:信息科学版, 2018, 43(4):485-495)
|
[10] |
ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Sci. Rev., 2010, 150(1/2/3/4):81-124
|
[11] |
LOWE D G. Object recognition from local scale-invariant features[C]//Proceeding of the International Conference on Computer Vision, Kerkyra:IEEE, 1999
|
[12] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vision, 2004, 60(2):91-110
|
[13] |
WANG Jia, WAN Wenhui, ZHAO Huanzhou, et al. Vision-based positioning method for Chang'E-4 lander[J]. Man. Spaceflight, 2019, 25(1):12-18 (王镓, 万文辉, 赵焕洲, 等. 基于视觉的嫦娥四号探测器着 陆点定位方法[J]. 载人航天, 2019, 25(1):12-18)
|
[14] |
XIN Xin. Research on Matching of Obiter Imagery and Digital Elevation Model[D]. Beijing:University of Chinese Academy of Sciences, 2019 (辛鑫, 月球轨道器影像与高程数据匹配方法研究[D]. 北京:中国科学院 大学, 2019)
|
[15] |
MAZARICO E, ROWLANDS D D, NEUMANN G A, et al. Orbit determination of the lunar reconnaissance orbiter[J]. J. Geod., 2012, 86(3):193-207
|
[16] |
BARKER M K, MAZARICO E, NEUMANN G A, et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. Icarus, 2016, 273:346-355
|
[17] |
MOREL J M, YU G. ASIFT:a new framework for fully affine invariant image comparison[J]. SIAM J. Imag. Sci., 2009, 2(2):438-469
|
[18] |
YU G, MOREL J M. ASIFT:an algorithm for fully affine invariant comparison[J]. Image Proc. Line, 2011, 1:11-38
|