留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁层顶穿越事件自动识别算法

宋小健 左平兵 周梓露

宋小健, 左平兵, 周梓露. 磁层顶穿越事件自动识别算法[J]. 空间科学学报, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375
引用本文: 宋小健, 左平兵, 周梓露. 磁层顶穿越事件自动识别算法[J]. 空间科学学报, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375
SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Automatic Identification of Magnetopause Crossing Events[J]. Journal of Space Science, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375
Citation: SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Automatic Identification of Magnetopause Crossing Events[J]. Journal of Space Science, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375

磁层顶穿越事件自动识别算法

doi: 10.11728/cjss2021.03.375
基金项目: 

国家自然科学基金项目(41731067)和广东省自然科学基金项目(2019A1515011067)共同资助

详细信息
    作者简介:

    宋小健,E-mail:sxjsgl@mail.ustc.edu.cn

  • 中图分类号: P353

Automatic Identification of Magnetopause Crossing Events

  • 摘要: 磁层顶是太阳风与磁层进行质量、动量、能量交换的关键区域.磁层顶穿越事件(MCEs)可通过对卫星探测到的粒子能谱和磁场数据图进行人工分析的方式来识别.因太阳风动压和行星际磁场的易变性,位于磁层顶附近的卫星经过长期观测可能会经历成千上万次的磁层顶穿越.人工分析的方法工作量巨大,而且识别速度慢.本文发展了一种新的日下点附近MCEs自动识别算法.此算法综合分析卫星探测到的粒子和磁场数据,能有效地减少误判的发生.为了验证算法的有效性,采用单CPU计算机对THEMIS卫星在2007—2018年靠近日下点附近观测到的数据进行MCEs自动识别,最终在约6h共识别出16758个MCEs.这些自动识别出来的MCEs样本可用于统计研究磁层顶相关的诸多物理问题,如凹陷磁层顶、太阳风与磁层相互作用,磁层顶磁场重联等.同时还分析了算法的精确性和局限性.

     

  • [1] CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
    [2] PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves: THEMIS observations compared to MHD theory[J]. J. Geophys. Res.: Space Phys., 2013, 118(4):1483-1499
    [3] PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion[J]. J. Geophys. Res.: Space Phys., 1996, 101(A4):7801-7815
    [4] SCHOLER M, TREUMANN R A. The low-latitude boundary layer at the flanks of the magnetopause[J]. Space Sci. Rev., 1997, 80(1):341-367
    [5] SIBECK D G, LEPPING R P, LAZARUS A J. Magnetic field line draping in the plasma depletion layer[J]. J. Geophys. Res. Space Phys., 1990, 95(A3):2433-2440
    [6] ØIEROSET M, MITCHELL D L, PHAN T D, et al. The magnetic field pile-up and density depletion in the martian magnetosheath: a comparison with the plasma depletion layer upstream of the Earth's magnetopause[J]. Space Sci. Rev., 2004, 111(1):185-202
    [7] PHAN T D, ESCOUBET C P, REZEAU L, et al. Magnetopause processes[J]. Space Sci. Rev., 2005, 118:367-424
    [8] LANZEROTTI L J, MACLENNAN C G. Hydromagnetic waves associated with possible flux transfer events[J]. Astrophys. Space Sci., 1988, 144(1):279-290
    [9] OTTO A, FAIRFIELD D H. Kelvin-helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations[J]. J. Geophys. Res.: Space Phys., 2000, 105(A9):21175-21190
    [10] YONG J C, OH S H, MIN K. Magnetic reconnection induced by Kelvin-Helmholtz instability[J]. Astrophys. Space Sci., 1996, 236(2):201-214
    [11] RYU D S, JONES T W, FRANK A. The magnetohydrodynamic Kelvin-Helmholtz instability: a three-dimensional study of nonlinear evolution[J]. Astrophys. J., 2000, 545(1):475-493
    [12] HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monog. Environ. Earth Planet., 2012, 1(2):71-119
    [13] PARK E, MOON Y J, LEE K. Observational test of empirical magnetopause location models using geosynchronous satellite data[J]. J. Geophys. Res.: Space Phys., 2016, 121(11):10994-11006
    [14] AUBRY M P, RUSSELL C T, KIVELSON M G. Inward motion of the magnetopause before a substorm[J]. J. Geophys. Res., 1970, 75(34):7018-7031
    [15] DMITRIEV A, SUVOROVA A, CHAO J K. A predictive model of geosynchronous magnetopause crossings[J]. J. Geophys. Res.: Space Phys., 2011, 116(A5):A05208
    [16] CASE N A. WILD J A. The location of the Earth's magnetopause: a comparison of modeled position and in situ Cluster data[J]. J. Geophys. Res.: Space Phys., 2013, 118(10):6127-6135
    [17] IVCHENKO N V, SIBECK N V, TAKAHASHI D G, et al. A statistical study of the magnetosphere boundary crossings by the Geotail satellite[J]. Geophys. Res. Lett., 2000, 27(18):2881-2884
    [18] SUVOROVA A, DMITRIEV A, CHAO J K, et al. Necessary conditions for geosynchronous magnetopause crossings[J]. J. Geophys. Res., 2005, 110(A1):A01206
    [19] JELINEK K, NEMECEK Z, SAFRANKOVA J. A new approach to magnetopause and bow shock modeling based on automated region identification[J]. J. Geophys. Res.: Space Phys., 2012, 117(A5):A05208
  • 加载中
计量
  • 文章访问数:  159
  • HTML全文浏览量:  4
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2020-04-05
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回