留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伴随磁层稳态对流的磁暴及磁暴期间环电流的特征

提烁 沈超 陈涛 曾刚

提烁, 沈超, 陈涛, 曾刚. 伴随磁层稳态对流的磁暴及磁暴期间环电流的特征[J]. 空间科学学报, 2021, 41(3): 384-391. doi: 10.11728/cjss2021.03.384
引用本文: 提烁, 沈超, 陈涛, 曾刚. 伴随磁层稳态对流的磁暴及磁暴期间环电流的特征[J]. 空间科学学报, 2021, 41(3): 384-391. doi: 10.11728/cjss2021.03.384
TI Shuo, SHEN Chao, CHEN Tao, ZENG Gang. Magnetic Storms Accompanied with Steady Magnetospheric Convection and Characteristics of the Ring Current during the Storms[J]. Chinese Journal of Space Science, 2021, 41(3): 384-391. doi: 10.11728/cjss2021.03.384
Citation: TI Shuo, SHEN Chao, CHEN Tao, ZENG Gang. Magnetic Storms Accompanied with Steady Magnetospheric Convection and Characteristics of the Ring Current during the Storms[J]. Chinese Journal of Space Science, 2021, 41(3): 384-391. doi: 10.11728/cjss2021.03.384

伴随磁层稳态对流的磁暴及磁暴期间环电流的特征

doi: 10.11728/cjss2021.03.384
基金项目: 

中国科学院空间科学战略性先导科技专项(XDA17010301,XDA17040102,XDA15052500,XDA15350201)和国家自然科学基金项目(41874190,41904148)共同资助

详细信息
    作者简介:

    提烁,E-mail:sti@spaceweather.ac.cn

    通讯作者:

    沈超,E-mail:shenchao@hit.edu.cn

    陈涛,E-mail:tchen@nssc.ac.cn

  • 中图分类号: P353

Magnetic Storms Accompanied with Steady Magnetospheric Convection and Characteristics of the Ring Current during the Storms

  • 摘要: 参考活跃的磁层稳态对流标准,选取了2001—2017年12个伴随磁层稳态对流的磁暴,研究发现这些磁暴存在以下共性:有长达约10h的漫长主相;其SYM-H存在一个最小值的平台期,约持续3~10h;这些磁暴发生时,部分环电流持续位于昏侧,其持续时间和行星际磁场分量Bz的稳定南向驱动时间相等.此外,这些磁暴发生时,其平台期的环电流离子的寿命为2.4~5.5h,比一般的大磁暴事件中离子寿命长,且其寿命与平台期长短没有明显关系.伴随稳态对流的大磁暴发生时,环电流离子寿命长,环电流衰减慢,推测是稳态对流期间能量持续而稳定注入磁层导致的.

     

  • [1] SERGEEV V A, PELLINEN R J, PULKKINEN T I. Steady magnetospheric convection: a review of recent results[J]. Space Sci. Rev., 1996, 75(3-4):551-604
    [2] SERGEEV V A. On the state of the magnetosphere during prolonged periods of the southward oriented IMF[J]. Phys. Sol.: Terr., 1977, 5:39
    [3] PYTTE T, MCPHERRON R L, HONES E W, et al. Multiple-satellite studies of magnetospheric substorms-distinction between polar magnetic substorms and convection-driven negative bays[J]. J. Geophys. Res., 1978, 83(A2):663-679
    [4] SERGEEV V A, KUBYSHKINA M V, LIOU K, et al. Substorm and convection bay compared: auroral and magnetotail dynamics during convection bay[J]. J. Geophys. Res., 2001, 106(A9):18843-18855
    [5] DEJONG A D, RIDLEY A J, CLAUER C R. Balanced reconnection intervals: four case studies[J]. Ann. Geophys., 2008, 26(12):3897-3912
    [6] DEJONG A D, RIDLEY A J, CAI X, et al. A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections[J]. J. Geophys. Res., 2009, 114:A08215
    [7] MCPHERRON R L ÖBRIEN T P, THOMPSON S. Solar wind drivers for steady magnetospheric convection[C]//Multiscale Coupling of Sun-Earth Processes. Amsterdam: Elsevier B V, 2005:113-124
    [8] KISSINGER J, MCPHERRON R L, HSU T S, et al. Steady magnetospheric convection and stream interfaces: relationship over a solar cycle[J]. J. Geophys. Res., 2011, 116:A00I19
    [9] DEJONG A D, BELL J M, RIDLEY, A. Comparison of the ionosphere during an SMC initiating substorm and an isolated substorm[J]. J. Geophys. Res.: Space Phys., 2018, 123(6):4939-4951
    [10] SERGEEV V A, PULKKINEN T I, PELLINEN R J, et al. Hybrid state of the tail magnetic configuration during steady convection events[J]. J. Geophys. Res., 1994, 99(A12):23571-23582
    [11] MCPHERRON R L. Physical Processes Producing Magnetospheric Substorms and Magnetic Storms[M]//Geomagnetism. San Diego: Academic press, 1991: 593-739
    [12] ÖBRIEN T P, THOMPSON S M, MCPHERRON R L. Steady magnetospheric convention: statistical signatures in the solar wind and AE[J]. Geophys. Res. Lett., 2002, 29(7):1130
    [13] SERGEEV V A, TSYGANENKO N A, ANGELOPOULOS V, et al. Magnetotail configuration during a steady convection event as observed by low-altitude and magnetospheric spacecraft[J]. J. Geophys. Res.: Space Phys., 2018, 123(10):8390-8406
    [14] JUUSOLA L, PARTAMIES N, TANSKANEN E. Effect of the ring current on preconditioning the magnetosphere for steady magnetospheric convection[J]. Geophys. Res. Lett., 2013, 40(10):1917-1921
    [15] DEJONG A D. Steady magnetospheric convection events: how much does steadiness matter[J]. J. Geophys. Res.: Space Phys., 2014, 119(6):4389-4399
    [16] MCWILLIAMS K A, PFEIFER J B, MCPHERRON R L. Steady magnetospheric convection selection criteria: implications of global SuperDARN convection measurements[J]. Geophys. Res. Lett., 2008, 35(9):L09102
    [17] SHEN Chao, ZENG Gang, LI Xinlin, et al. Evolution of the storm magnetic field disturbance around Earth's surface and the associated ring current as deduced from multiple ground observatories[J]. J. Geophys. Res.: Space Phys., 2015, 120(1):564-580
    [18] ZENG Gang, SHEN Chao, RONG Zhaojin, et al. Monitoring the global evolution of the storm ring current and storm indices from confined ground geomagnetic observatories[J]. J. Atmos. Sol.: Terr. Phys., 2019, 191:105049
    [19] BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. J. Geophys. Res., 1975, 80(31):4204-4214
    [20] SHEN Chao, LIU Zhenxing. A physics-based study of the Dst-AL relationship[J]. J. Geophys. Res., 2002, 107(A1):1009
    [21] (徐文耀, 杜爱民. 磁暴环电流衰减率对磁层能量状态的影响[J]. 地球物理学报, 2010, 53(6):329-338

    XU Wenyao, DU Aimin. Effects of the ring current decay rate on the energy state of the magnetosphere[J]. Chin. J. Geophys., 2010, 53(6):329-338
    [22] XIE Lun, PU Zuyin, ZHOU Xuzhi, et al. The formation process of magnetic storm ring current[J]. Chin. Sci. Bull., 2004, 49(6):603-610(谢伦, 濮祖荫, 周煦之, 等. 磁暴环电流形成过程[J]. 科学通报, 2004, 49(6):603-610)
    [23] ZHAO H, LI X, BAKER D N, et al. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements[J]. J. Geophys. Res. Space Phys., 2016, 121:3333-3346
    [24] GONZALEZ W D, TSURUTANI B T, GONZALEZ A L C, et al. Solar wind-magnetosphere coupling during intense magnetic storms (1978—1979)[J]. J. Geophys. Res., 1989, 94(A7):8835-8851
  • 加载中
计量
  • 文章访问数:  462
  • HTML全文浏览量:  84
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-09-27
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回