留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基单站GNSS的电离层VTEC高精度解算方法

刘琨 盛冬生 王飞飞 张红波 李建儒

刘琨, 盛冬生, 王飞飞, 张红波, 李建儒. 地基单站GNSS的电离层VTEC高精度解算方法[J]. 空间科学学报, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417
引用本文: 刘琨, 盛冬生, 王飞飞, 张红波, 李建儒. 地基单站GNSS的电离层VTEC高精度解算方法[J]. 空间科学学报, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417
LIU Kun, SHENG Dongsheng, WANG Feifei, ZHANG Hongbo, LI Jianru. High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station[J]. Chinese Journal of Space Science, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417
Citation: LIU Kun, SHENG Dongsheng, WANG Feifei, ZHANG Hongbo, LI Jianru. High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station[J]. Chinese Journal of Space Science, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417

地基单站GNSS的电离层VTEC高精度解算方法

doi: 10.11728/cjss2021.03.417
基金项目: 

国家自然科学基金项目(61971385,61901424)和张明高院士工作室基金项目(A171911Y104)共同资助

详细信息
    作者简介:

    刘琨,E-mail:liukun8010@126.com

  • 中图分类号: P352

High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station

  • 摘要: 利用IGS提供的双频GNSS观测数据,分析了Kalman方法解算电离层垂直总电子含量(Vertical Total Electron Content,VTEC)存在的问题,提出了Kriging-Kalman改进解算方法,并对两种方法解算的电离层VTEC进行分析和比较.结果表明:在低纬地区,当观测卫星数量发生改变时,Kalman方法解算的VTEC存在跳变异常,Kriging-Kalman方法解算的VTEC变化较为平稳,不存在跳变现象.对比分析耀斑期间两种方法解算VTEC的变化,发现Kalman方法解算的VTEC变化明显小于耀斑引起VTEC的增量;Kriging-Kalman方法解算结果与实际变化相一致.表明Kriging-Kalman方法计算精度更高,能够更精确计算耀斑等剧烈异常空间天气活动期间的VTEC及其变化,有利于电离层VTEC日常精确监测、研究和工程应用.

     

  • [1] YASYUKEVICH Y, ASTAFYEVA E, PADOKHIN A, et al. The 6 September 2017 X-class solar flares and their impacts on ionosphere, GNSS, and HF radio wave propagation[J]. Space Weather, 2018, 16:1013-1027
    [2] CHAKRABORTY S K, HAJRA R, DASGUPTA A. Ionospheric scintillation near the anomaly crest in relation to the variability of ambient ionization[J]. Radio Sci., 2012, 47:RS2006
    [3] SCHAER S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Berne Switzerland: University of Bern, 1999
    [4] GEORGIADIOU Y. Modeling the Ionosphere for Active Control Network of GPS Station[M]. Delft: LGR-Series-Publications of the Delft Geodetic Computing Centre, 1994
    [5] YUAN Y B, OU J K. A generalized trigonometric series function model for determining ionospheric delay[J]. Prog. Nat. Sci., 2004, 14(11):1010-1014
    [6] MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33(3):565-582
    [7] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. New approaches in global ionospheric determination using ground GPS data[J]. J. Atmos. Sol.: Terr. Phys., 1999, 61(16):1237-1247
    [8] LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS sercice[J]. Chin. J. Geophys., 2017, 60(10):3718-3729(李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729)
    [9] SARDON E, RIUS A, ZARRAOA N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [10] CHANG Qing, ZHANG Donghe, XIAO zuo, et al. A method for estimation GPS instrumental biases and its application in TEC calculation[J]. Chin. J. Geophys., 2001, 40(5):596-601(常青, 张东和, 萧佐, 等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J]. 地球物理学报, 2001, 40(5):596-601)
    [11] LI Qiang, FENG Man, ZHANG Donghe, et al. Methods of estimation of GPS instrumental bias from single site's GPS data and comparative study of results[J]. J. Peking Univ: Nat. Sci., 2008, 44(1):149-156(李强, 冯曼, 张东和, 等. 基于单站GPS数据的GPS系统硬件延迟估算方法及结果比较[J]. 北京大学学报: 自然科学版, 2008, 44(1):)
    [12] WANG Xiaolan, MA Guanyi. Derivation of TEC and GPS hardware delay based on dual-frequency GPS observations[J]. Chin. J. Space Sci., 2014, 34(2):168-179(王晓岚, 马冠一. 基于双频GPS观测的电离层TEC与硬件延迟反演方法[J]. 空间科学学报, 2014, 34(2):168-179)
    [13] LI Zishen. Study on the Mitigation of Ionospheric Delay and the Monitoring of Global Ionospheric TEC Based on GNSS/Compass[D]. Beijing: University of Chinese Academy of Sciences, 2012
    [14] SU Shu, LIN Aiwen, LIU Qinghua, et al. Application of ordinary Kriging method in spatial interpolation[J]. J. Jiangnan Univ.: Nat. Sci., 2004, 3(1):18-21
    [15] ZHU Ruirui, LI Lan, WANG Hao, et al. The spatial variability of precipitation and spatial interpolation methods are compared[J]. Rural Water Conservancy Hydropower China, 2004, 7:25-28(朱芮芮, 李兰, 王浩, 等. 降水量的空间变异性和空间插值方法的比较研究[J]. 中国农村水利水电, 2004, 7:25-28)
    [16] STANISLAWSKA I, JUCHNIKOWSKI G, CANDER L R. Kringing method for instantaneous mapping at low and equatorial latitudes[J]. Adv. Space Res., 1996, 18(6):172-176
    [17] STANISLAWSKA I, GULYAEVA T, HANBABA R, et al. COST 251 recommended instantaneous mapping model of ionospheric characteristics-PLES[J]. Phys. Chem. Earth, 2000, 25(4):291-294
  • 加载中
计量
  • 文章访问数:  401
  • HTML全文浏览量:  45
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-10-15
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回