留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜模波识别方法研究及其在火星磁鞘中的应用

金泰峰 李磊 张艺腾

金泰峰, 李磊, 张艺腾. 镜模波识别方法研究及其在火星磁鞘中的应用[J]. 空间科学学报, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431
引用本文: 金泰峰, 李磊, 张艺腾. 镜模波识别方法研究及其在火星磁鞘中的应用[J]. 空间科学学报, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431
JIN Taifeng, LI Lei, ZHANG Yiteng. Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath[J]. Chinese Journal of Space Science, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431
Citation: JIN Taifeng, LI Lei, ZHANG Yiteng. Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath[J]. Chinese Journal of Space Science, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431

镜模波识别方法研究及其在火星磁鞘中的应用

doi: 10.11728/cjss2021.03.431
基金项目: 

民用航天技术预先研究项目(D020104)和北京市科学技术委员会(Z191100004319001)共同资助

详细信息
    作者简介:

    李磊,E-mail:lil@nssc.ac.cn;金泰峰,E-mail:jintaifeng15@mails.ucas.ac.cn

  • 中图分类号: P353

Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath

  • 摘要: 镜模波是温度各向异性等离子体中的一种波动结构,根据磁场和离子分布及波动特性可以进行识别.本文对比了只使用磁场数据与同时使用磁场及离子数据两种识别方法,分析了两类方法的特点.只使用磁场数据的方法基于磁场强度变化大、方向沿背景磁场的特征,通常使用磁场强度的波动幅度ΔB/|B|以及磁场变化方向与背景磁场的夹角θminθmax作为参数;同时使用磁场及粒子数据的方法利用的是磁场纵波特性、总压平衡和波动在等离子体坐标系下静止的特征.使用两种方法对MAVEN卫星在火星磁鞘内的数据进行识别,结果表明在某些情况下,只使用磁场数据会导致对镜模波的误判.通过研究改变上述参数阈值时识别结果的变化,发现当θmin> 40°,θmax < 40°,ΔB/|B|> 80%时,只用磁场数据可取得较好的识别效果.

     

  • [1] HASEGAWA A. Drift mirror instability in the magnetosphere[J]. Phys. Fluids, 1969, 12:2642
    [2] SOUTHWOOD D J, KIVELSON M G. Mirror instability: 1. Physical mechanism of linear instability[J]. J. Geophys. Res., 1993, 98(A6):9181-9187
    [3] SHEVYREV N N. Mirror mode waves in the Earth's magnetosheath observed by the INTERBALL-1 satellite[J]. Cosmic Res., 2005, 43(4):291-298
    [4] LUCEK E A, DUNLOP M W, BALOGH A, et al. Mirror mode structures observed in the dawn-side magnetosheath by Equator-S[J]. Geophys. Res. Lett., 1999, 26(14):2159-2162
    [5] JOY S P, KIVELSON M G, WALKER R J, et al. Mirror mode structures in the Jovian magnetosheath[J]. J. Geophys. Res., 2006, 111:A12212
    [6] RUSSELL C T, REIDLER W, SCHWINGENSHUH K, et al. Mirror instability in the magnetosphere of comet Halley[J]. Geophys. Res. Lett., 1987, 14:644
    [7] GLASSMEIER K H, MOTSCHMANN U, MAZELLE C, et al. Mirror modes and fast magnetosonic waves near the magnetic pileup boundary of comet P/Halley[J]. J. Geophys. Res., 1993, 98(A12):20955-20964
    [8] HUDDLESTON D E, STRANGEWAY R J, BLANCO-CANO X, et al. Mirror-mode structures at the Galileo-Io fllyby: Instability criterion and dispersion analysis[J]. J. Geophys. Res., 1999, 104(A8):17479-17489
    [9] GENOT V, BUDNIK E, JACQUEY C, et al. Mirror modes observed with Cluster in the Earth's magnetosheath: statistical study and IMF/solar wind dependence[J]. Adv. Geosci., 2009, 14:263-283
    [10] SOUCEK J, LUCEK E, DANDOURAS I. Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters[J]. J. Geophys. Res., 2008, 113:A04203
    [11] VOLWERK M, ZHANG T L, DELVA M, et al. First identification of mirror mode waves in Venus's magnetosheath[J]. Geophys. Res. Lett., 2008, 35:L12204
    [12] ERDOS G, BALOGH A. Statistical properties of mirror mode structures observed by Ulysses in the magnetosheath of Jupiter[J]. J. Geophys. Res., 1996, 101(A1):1-12
    [13] TATRALLYAY M, ERDOS G. The evolution of mirror mode fluctuations in the terrestrial magnetosheath[J]. Planet. Space Sci., 2002, 50:593-599
    [14] ZHANG T L, RUSSELL C T, BAUMJOHANN W, et al. Characteristic size and shape of the mirror mode structures in the solar wind at 0.72AU[J]. Geophys. Res. Lett., 2008, 35:L10106
    [15] SONG P, RUSSELL C T, GARY S P. Identification of low-frequency fluctuations in the terrestrial magnetosheath[J]. J. Geophys. Res., 1994, 99(A4):6011-6025
    [16] SONNERUP B U O, CAHILL JR L J. Magnetopause structure and attitude from Explorer 12 observations[J]. J. Geophys. Res., 1967, 72:171
    [17] NAGY A F, WINTERHALTER D, SAUER K, et al. The plasma environment of Mars[J]. Space Sci. Rev., 2004, 111:33-144
    [18] CONNERNEY J E P, ESPLEY J, LAWTON P, et al. The MAVEN magnetic field investigation[J]. Space Sci. Rev., 2015, 195(1/2/3/4):257-291
    [19] HALEAS J S, TAYLOR E R, DALTON G, et al. The slar wind ion analyzer for MAVEN[J]. Space Sci. Rev., 2013, 195(1/2/3/4):DOI: 10.1007/s11214-013-0029-z
    [20] EDBERG N J T, LESTER M, COWLEY S W H, et al. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields[J]. J. Geophys. Lett., 2008, 113:A08206
    [21] YAO S T, WANG X G, SHI Q Q, et al. Observations of kinetic-size magnetic holes in the magnetosheath[J]. J. Geophys. Res. Space Phys., 2017, 122:1990-2000
    [22] HUANG S Y, DU J W, SAHRAOUI F. A statistical study of kinetic-size magnetic holes in turbulent magnetosheath: MMS observations[J]. J. Geophys. Res. Space Phys., 2017, 122:8577-8588
    [23] CALIFANO F, HELLINGERP, KUZNETSOV E, et al. Nonlinear mirror mode dynamics: simulations and modeling[J]. J. Geophys. Res., 2008, 113. DOI: 10.1029/2007JA012898
  • 加载中
计量
  • 文章访问数:  407
  • HTML全文浏览量:  82
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-09-29
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回