留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件信号模拟器的电离层TEC监测仪 差分码偏差长期变化

刘裔文 章振中 欧明

刘裔文, 章振中, 欧明. 基于硬件信号模拟器的电离层TEC监测仪 差分码偏差长期变化[J]. 空间科学学报, 2021, 41(3): 499-504. doi: 10.11728/cjss2021.03.499
引用本文: 刘裔文, 章振中, 欧明. 基于硬件信号模拟器的电离层TEC监测仪 差分码偏差长期变化[J]. 空间科学学报, 2021, 41(3): 499-504. doi: 10.11728/cjss2021.03.499
LIU Yiwen, ZHANG Zhenzhong, OU Ming. Long-term Variation of Differential Code Biases of Ionospheric TEC Monitor Based on Hardward Signal Simulator[J]. Chinese Journal of Space Science, 2021, 41(3): 499-504. doi: 10.11728/cjss2021.03.499
Citation: LIU Yiwen, ZHANG Zhenzhong, OU Ming. Long-term Variation of Differential Code Biases of Ionospheric TEC Monitor Based on Hardward Signal Simulator[J]. Chinese Journal of Space Science, 2021, 41(3): 499-504. doi: 10.11728/cjss2021.03.499

基于硬件信号模拟器的电离层TEC监测仪 差分码偏差长期变化

doi: 10.11728/cjss2021.03.499
基金项目: 

江西省教育厅科学技术研究项目资助(GJJ201722)

详细信息
    作者简介:

    刘裔文,E-mail:liuyiwen@whu.edu.cn

  • 中图分类号: P352

Long-term Variation of Differential Code Biases of Ionospheric TEC Monitor Based on Hardward Signal Simulator

  • 摘要: 利用硬件信号模拟器可以标定电离层TEC监测仪的差分码偏差.通过对相同接收机时隔近41.5月进行的两次差分码偏差标定实验,以GPS系统为例分析了硬件标定法得到的差分码偏差随时间的长期变化情况.结果表明:接收机差分码偏差均值从第一次实验的16.122ns增加至第二次实验的16.749ns,在约41.5月的时间内增加约0.627ns,月增量为0.0151ns,增加比较缓慢;第二次实验的差分码偏差标准差也有所增加,但增量也不大(均值分别为0.05ns和0.07ns).此外,两次标定实验的TEC测量精度(均方根误差)均达到约0.3TECU,对应的差分码偏差误差约0.1ns,这说明该接收机差分码偏差变化的一致性较好.若不加以再次标定,第二次实验时TEC测量误差将增加至约1.8TECU,月增量约为0.0434TECU.

     

  • [1] AMMAR M, AQUINO M, VEETTIL S V, et al. Estimation and analysis of multi-GNSS differential code biases using a hardware signal simulator[J]. GPS Solut., 2018, 22(32).DOI: 10.1007/s10291-018-0700-7
    [2] DYRUD L, JOVANCEVIC A, BROWN A, et al. Ionospheric measurement with GPS: receiver techniques and methods[J]. Radio Sci., 2008, 43(6).DOI.org/10. 1029/2007rs003770
    [3] SARDÓN E, RIUS A, ZARRAOA N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [4] JAKOWSKI N, SARDON E, ENGLER E, et al. Relationships between GPS-signal propagation errors and EISCAT observations[J]. Ann. Geophys., 1996, 14(12):1429-1436
    [5] YUAN Yunbing, HUO X L, OU J K. Models and methods for precise determination of ionospheric delay using GPS[J]. Prog. Natl. Sci., 2007, 17(2):187-196
    [6] DURMAZ M, KARSLIOGLU M O. Regional Vertical Total Electron Content (VTEC) modeling together with satellite and receiver Differential Code Biases (DCB) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)[J]. J. Geod., 2015, 89(4):347-360
    [7] MA G, MARUYAMA T. Derivation of TEC and estimation of instrumental biases from GEONET Japan[J]. Ann. Geophys., 2003, 21(10):2083-2093
    [8] MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps[J]. Navigation, 2014, 61(3):191-201
    [9] LIU Yiwen, LIU Chengyu. A method of estimating DCB of the GNSS receiver by using the signal simulator[J]. GNSS World China, 2017, 42(1):74-76(刘裔文, 刘承禹. 一种利用信号模拟器测定GNSS接收机差分码偏差的方法[J]. 全球定位系统, 2017, 42(1):74-76)
    [10] ZHONG J, LEI J, DOU X, et al. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability[J]. GPS Solut., 2015, 20(3):313-319
    [11] SPIRENT COMMUNICATIONS PLC. MS9000 GSS9000 Data sheet[OL]. [2019-04-17]. https://www.spirent.com/products/gnss-simulator-gss9000
  • 加载中
计量
  • 文章访问数:  385
  • HTML全文浏览量:  62
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 修回日期:  2021-01-23
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回