留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于COSMIC掩星精密定轨数据的等离子体层电子含量研究

傅维正 马冠一 万庆涛 李婧华 王晓岚 卢伟俊

傅维正, 马冠一, 万庆涛, 李婧华, 王晓岚, 卢伟俊. 基于COSMIC掩星精密定轨数据的等离子体层电子含量研究[J]. 空间科学学报, 2021, 41(4): 555-561. doi: 10.11728/cjss2021.04.555
引用本文: 傅维正, 马冠一, 万庆涛, 李婧华, 王晓岚, 卢伟俊. 基于COSMIC掩星精密定轨数据的等离子体层电子含量研究[J]. 空间科学学报, 2021, 41(4): 555-561. doi: 10.11728/cjss2021.04.555
FU Weizheng, MA Guanyi, WAN Qingtao, LI Jinghua, WANG Xiaolan, LU Weijun. Study of Plasmaspheric Electron Content Based on Precise Orbit Determination Data of COSMIC Radio Occultation[J]. Journal of Space Science, 2021, 41(4): 555-561. doi: 10.11728/cjss2021.04.555
Citation: FU Weizheng, MA Guanyi, WAN Qingtao, LI Jinghua, WANG Xiaolan, LU Weijun. Study of Plasmaspheric Electron Content Based on Precise Orbit Determination Data of COSMIC Radio Occultation[J]. Journal of Space Science, 2021, 41(4): 555-561. doi: 10.11728/cjss2021.04.555

基于COSMIC掩星精密定轨数据的等离子体层电子含量研究

doi: 10.11728/cjss2021.04.555
基金项目: 

国家重点研发计划项目(2016YFB0501900)和国家自然科学基金项目(11873064)共同资助

详细信息
    作者简介:

    傅维正,E-mail:fuweizheng17@mails.ucas.ac.cn

  • 中图分类号: P353

Study of Plasmaspheric Electron Content Based on Precise Orbit Determination Data of COSMIC Radio Occultation

  • 摘要: 等离子体层是日地环境重要的组成部分.本文利用COSMIC掩星精密定轨数据经处理后得到的podTec文件获取等离子体层电子含量(PEC)对等离子体层进行研究.将podTec数据进行处理后获得的PEC(pod-PEC)和IRI-Plas经验模型提供的PEC (IRI-PEC)进行对比,发现pod-PEC与IRI-PEC符合得较好.在低(0°—20°)、中(20°—50°)、高(50°—90°)修正地磁纬度带下,分析了COSMIC在太阳活动极大年(2014年)3,6,9和12月的pod-PEC,得到如下结论:PEC随着纬度升高而逐渐减少,且3,9月PEC在中低纬关于磁赤道的南北对称性较好,6月北半球各纬度带的PEC明显高于南半球同一纬度带的值,而12月情况则完全相反,南半球中纬的PEC甚至会等于北半球低纬的PEC值;PEC在白天高而晚上低,高纬地区的PEC昼夜变化不明显;PEC具有明显的季节性.对于北半球,一年中PEC最大值出现在春季,冬秋季次之,夏季最低,具有明显的年度异常现象.

     

  • [1] DU Peiheng, ZHANG Xiaoxin, HE Fei, et al. 2018. Study on the relationship between the Earth's plasmapause and geomagnetic activity[J]. Chin. J. Geophys., 2018, 61(1):9-17(杜沛珩, 张效信, 何飞, 等. 地球等离子体层顶与地磁活动的关系研究[J]. 地球物理学报, 2018, 61(1):9-17)
    [2] GALLAGHER D L, CRAVEN P D, COMFORT R H. Global core plasma model[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18819-18833
    [3] CHEN P, YAO Y. Research on global plasmaspheric electron content by using LEO occultation and GPS data[J]. Adv. Space Res., 2015, 55(9):2248-2255
    [4] BALAN N, OTSUKA Y, TSUGAWA T, et al. Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity[J]. Earth Planet. Space, 2002, 54(1):71-79
    [5] BELEHAKI A, JAKOWSKI N, REINISCH B W. Plasmaspheric electron content derived from GPS TEC and digisonde ionograms[J]. Adv. Space Res., 2004, 33(6):833-837
    [6] LIU L, YAO Y, KONG J, et al. Plasmaspheric electron content inferred from residuals between GNSS-Derived and TOPEX/JASON vertical TEC data[J]. Remote Sens., 2018, 10(4):621
    [7] YUE X, SCHREINER W S, HUNT D C, et al. Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination[J]. Space Weather, 2011, 9(9):DOI: 10.1029/2011SW000687
    [8] ZHANG Manlian, LIU Libo, WAN Weixing, et al. Variation of the plasmaspheric electron content derived from the podTEC observations of COSMIC LEO satellites to GPS signals[J]. Chin. J. Geophys., 2016, 59(1):1-7(张满莲, 刘立波, 万卫星, 等. 利用COSMIC低轨卫星对GPS信号的顶部TEC观测资料研究等离子体层电子含量的变化特征[J]. 地球物理学报, 2016, 59(1):1-7)
    [9] ZHANG X, TANG L. Daily global plasmaspheric maps derived from cosmic GPS observations[J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(10):6040-6046
    [10] CHEN P, YAO Y, LI Q, et al. Modeling the plasmasphere based on LEO satellites onboard GPS measurements[J]. J. Geophys. Res.:Space Phys., 2017, 122(1):1221-1233
    [11] KE Xiaocong. The Quality Control of Formosat-3/COSMIC Ionospheric Data (in Chinese)[D]. Taoyuan:National Central University, 2009(柯孝聪. 福卫三号电离层数据质量控管[D]. 桃园:国立中央大学, 2009)
    [12] ROCKEN C, YING-HWA K, SCHREINER W S, et al. COSMIC system description[J]. Terr. Atmos. Oceanic Sci., 2000, 11(1):21-52
    [13] LIOU Y. Radio Occultation Method for Remote Sensing of the Atmosphere and Ionosphere[M]. Croatia:In Tech, 2010
    [14] SEZEN U, GULYAEVA T L, ARIKAN F. Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather[J]. Geod. Geodyn., 2018, 9(05):5-15
    [15] SCHARROO R, SMITH W H F. A global positioning system-based climatology for the total electron content in the ionosphere[J]. J. Geophys. Res.:Space Phys., 2010, 115(A10):DOI: 10.1029/2009JA014719
    [16] RAWER K. Encyclopedia of Physics, Geophysics I!I!I, Part V!I!I[M]. Berlin:Springer-Verlag, 1984:389-391
    [17] AZPILICUETA F, BRUNINI C, RADICELLA S M. Global ionospheric maps from GPS observations using modip latitude[J]. Adv. Space Res., 2006, 38(11):2324-2331
    [18] SARDON E, RIUS A, ZARRAOA N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [19] GUO Caifa, ZHANG Lijun, CAI Hong. Analysis of geomagnetic navigation accuracy under magnetic storms[J]. Chin. J. Space Sci., 2011, 31(3):372-377(郭才发, 张力军, 蔡洪. 磁暴期间的地磁导航精度分析[J]. 空间科学学报, 2011, 31(3):372-377)
    [20] RICHARDS P G. Seasonal and solar cycle variations of the ionospheric peak electron density:comparison of measurement and models[J]. J. Geophys. Res.:Space Phys., 2001, 106(A7):12803-12819
    [21] LEE H B, JEE G, KIM Y H, et al. Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite[J]. J. Geophys. Res.:Space Phys., 2013, 118(2):935-946
    [22] CHEN P, LI Q, YAO Y, et al. Study on the plasmaspheric Weddell Sea Anomaly based on COSMIC onboard GPS measurements[J]. J. Atmos. Sol.:Terr. Phys., 2019, 192:104923
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  6
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-10-16
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回