留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧气A波段临近空间大气温度反演的贝叶斯与最小二乘法对比

杨晓君 李叶飞 王后茂 王咏梅 付建国

杨晓君, 李叶飞, 王后茂, 王咏梅, 付建国. 基于氧气A波段临近空间大气温度反演的贝叶斯与最小二乘法对比[J]. 空间科学学报, 2021, 41(5): 769-777. doi: 10.11728/cjss2021.05.769
引用本文: 杨晓君, 李叶飞, 王后茂, 王咏梅, 付建国. 基于氧气A波段临近空间大气温度反演的贝叶斯与最小二乘法对比[J]. 空间科学学报, 2021, 41(5): 769-777. doi: 10.11728/cjss2021.05.769
YANG Xiaojun, LI Yefei, WANG Houmao, WANG Yongmei, FU Jianguo. Bayesian and Least Square Method for Temperature Inversion of Adjacent Space Atmosphere Based on Oxygen A-band[J]. Chinese Journal of Space Science, 2021, 41(5): 769-777. doi: 10.11728/cjss2021.05.769
Citation: YANG Xiaojun, LI Yefei, WANG Houmao, WANG Yongmei, FU Jianguo. Bayesian and Least Square Method for Temperature Inversion of Adjacent Space Atmosphere Based on Oxygen A-band[J]. Chinese Journal of Space Science, 2021, 41(5): 769-777. doi: 10.11728/cjss2021.05.769

基于氧气A波段临近空间大气温度反演的贝叶斯与最小二乘法对比

doi: 10.11728/cjss2021.05.769
基金项目: 

国家自然科学基金项目资助(41704178)

详细信息
    作者简介:

    杨晓君,E-mail:569653045@qq.com

  • 中图分类号: P352

Bayesian and Least Square Method for Temperature Inversion of Adjacent Space Atmosphere Based on Oxygen A-band

  • 摘要: 基于氧气A波段的临边辐射模拟数据进行临近空间大气温度廓线的反演,分析比较了贝叶斯和最小二乘两种不同反演算法的特点.80km以下,信噪比为66~337时:基于贝叶斯理论反演的三条谱线761.59,762.2,764.05nm的反演误差平均值分别为5.52,3.94,4.73K;采用最小二乘法的反演误差平均值分别为10.57,7.04,8.80K.信噪比为6~34时:基于贝叶斯理论反演的三条谱线的反演误差平均值分别为18.27,12.18,18.27K;采用最小二乘法的反演误差平均值分别为103.18,68.79,85.98K.研究结果表明,基于贝叶斯理论的反演方法,利用先验信息对反演结果进行约束和修正,在有噪声的情况下获得了更合理的解,从而提高了反演精度和抗干扰能力.这为星载探测临近空间大气温度的算法研究和开发提供了参考,也为提高光谱仪器信噪比并进而提高温度反演精度提供了理论基础.

     

  • [1] WANG Yingjian. Effects of middle and upper atmosphere on satellite system[J]. China Sci., 2000, 30(12):17-20(王英鉴. 中高层大气对卫星系统的影响[J]. 中国科学, 2000, 30(12):17-20)
    [2] YEE J H, DEMAJISTRE R, MORGAN F. The O2 (b 1Σ) dayglow emissions:application to middle and upper atmosphere remote sensing[J]. Can. J. Phys., 2012, 90:769
    [3] HAYS P B, ABREU V J, DOBBS M E, et al. The high-resolution doppler imager on the Upper Atmosphere Research Satellite[J]. J. Geophys. Res., 1993, 98(D6):10713-10723
    [4] ZARBOO A, BENDER S, BURROWS J P, et al. Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans[J]. Atmos. Meas. Tech., 2018, 11:473
    [5] SKINNER W R, HAYS P B, GRASSL H J, et al. High-resolution doppler imager on the upper atmosphere research satellite[C]//SPIE International Symposium on Optics. International Society for Optics and Photonics, 1994
    [6] KILLEEN T L, WU Q, SOLOMON S C, et al. TIMED doppler interferometer:overview and recent results[J]. J. Geophys. Res., 2006, 111(A10).DOI: 10.1029/2005JA011484
    [7] SHEESE P E, LLEWELLYN E J, GATTINGER T L, et al. Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra[J]. Can. J. Phys., 2010, 88(12):919-925
    [8] SUGITA T, YOLOTA T, NAKAJIMA T, et al. Temperature and pressure retrievals from O2 A-band absorption measurements made by ILAS:retrieval algorithm and error analyses[J]. Proceed. SPIE, 2001, 4150(4):I1759-I1764
    [9] CHRISTOPH R E, JOHN M H, CHARLES M B, et al. The ionospheric connection explorer mission:mission goals and design[J]. Space Sci. Rev., 2018, 214(1):13
    [10] ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI):instrument design and calibration[J]. Space Sci. Rev., 2017, 212(1/2):1-32
    [11] ROTHMAN L S, JACQUEMART D, BARBE A, et al. The HITRAN 2004 molecular spectroscopic database[J]. J. Quant. Spectrosc. Rad. Trans., 2005, 96(2):139-204
    [12] PICONE J. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
    [13] BUCHOLTZ A, SKINNER W R, ABREU V J, et al. The dayglow of the O2 atmospheric band system[J]. Planet. Space Sci., 1986, 34(11):1031-1035
    [14] ORTLAND D A, HAYS P B, SKINNER W R, et al. A sequential estimation technique for recovering atmospheric data from orbiting satellites[J]. Geophys. Monograph, 1995, 87.DOI: 10.1029/GM087p0329
    [15] RODGERS C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J]. Rev. Geophys., 1976, 14(4):609-624
  • 加载中
计量
  • 文章访问数:  384
  • HTML全文浏览量:  70
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-05-08
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回