留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制

付晓东 陈力

付晓东, 陈力. 全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制[J]. 空间科学学报, 2021, 41(5): 819-827. doi: 10.11728/cjss2021.05.819
引用本文: 付晓东, 陈力. 全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制[J]. 空间科学学报, 2021, 41(5): 819-827. doi: 10.11728/cjss2021.05.819
FU Xiaodong, CHEN Li. Output Feedback Finite-dimensional Repetitive Learning Control on Virtual Force for Flexible-base Flexible-link and Flexible-joint Space Robot[J]. Journal of Space Science, 2021, 41(5): 819-827. doi: 10.11728/cjss2021.05.819
Citation: FU Xiaodong, CHEN Li. Output Feedback Finite-dimensional Repetitive Learning Control on Virtual Force for Flexible-base Flexible-link and Flexible-joint Space Robot[J]. Journal of Space Science, 2021, 41(5): 819-827. doi: 10.11728/cjss2021.05.819

全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制

doi: 10.11728/cjss2021.05.819
基金项目: 

国家自然科学基金项目(11372073,11072061)和福建省工业机器人基础部件技术重大研发平台项目(2014H21010011)共同资助

详细信息
    作者简介:

    付晓东,E-mail:fuxdmail@163.com

  • 中图分类号: V42;TP241

Output Feedback Finite-dimensional Repetitive Learning Control on Virtual Force for Flexible-base Flexible-link and Flexible-joint Space Robot

  • 摘要: 探讨了基座、关节、臂均存在柔性情况下,空间机器人关节轨迹运动及多重柔性振动的主动控制和主动抑制问题.结合线性弹簧、扭转弹簧、简支梁及假设模态法,利用拉格朗日方程建立了基座、关节、臂全柔性影响下的空间机器人系统动力学模型,利用奇异摄动法,将模型分解为关节运动慢变子系统与关节柔性振动快变子系统.为控制慢变子系统中载体姿态、关节刚性运动并且抑制臂的柔性振动,依据虚拟控制力的概念,设计了基于有限维傅里叶级数解析周期信号的输出反馈重复学习算法.李雅普诺夫直接法证实了上述控制器的稳定性.为了抑制快变子系统中基座和关节的柔性振动,分别采用线性二次最优控制方法以及引入关节柔性补偿器间接增大关节等效刚度的方式,使控制算法不局限于求解弱非线性问题.系统数值仿真结果表明,所提出的控制器能够有效抑制机器人多重柔性构件的振动,实现对期望信号的高品质追踪.

     

  • [1] ZHOU Y Q, LUO J J, WANG M M. Dynamic coupling analysis of multi-arm space robot[J]. Acta Astronaut., 2019, 160:583-593
    [2] GE Xinsheng, ZHANG Qizhi, LIU Yanzhu. An optimized method to control the motion planning of space manipulators base genetic algorithm[J]. Chin. J. Space Sci., 2000, 20(2):185-191(戈新生, 张奇志, 刘延柱. 基于遗传算法的空间机械臂运动规划的最优控[J]. 空间科学学报, 2000, 20(2):185)
    [3] CHENG Lei, WANG Tianshu, LI Junfeng. Attitude dynamics and control of a flexible multi-body satellite[J]. J. Tsinghua Univ.:Sci. Technol., 2005, 45(11):1506-1509(程磊, 王天舒, 李俊峰. 挠性多体卫星姿态动力学与控制[J]. 清华大学学报:自然科学版, 2005, 45(11):1506-1509)
    [4] KUMAR A, PATHAK P M, SUKAVANAM N. Trajectory control of a two DOF rigid-flexible space robot by a virtual space vehicle[J]. Robot. Auton. Syst., 2013, 61(5):473
    [5] STIEBER M E, TRUDEL C P, HUNTER D G. Robotic systems for the international space station[C]//Proceedings of the 1997 IEEE International Conference on Robotics and Automation Albuquerque. New Mexico:IEEE, 1997:3068-3073
    [6] EVANS L. Canadian space robotics on board the international space[C]//2005 CCToMM Symposium on Mechanism, Machines, and Mechatronics. Montreal:Canadian Space Agency, 2005:26-27
    [7] MASOUDI R, MAHZOON M. Maneuvering and vibrations control of a free-floating space robot with flexible arms[J]. J. Dynam. Syst. Meas. Control, 2011, 133(5):1
    [8] ZHENG Tong, ZHANG Dingguo, HONG Jiazhen. Dynamic modeling and simulation for three dimensional flexible beam systems with large deformations[J]. J. Mech. Eng., 2016, 52(19):81-87(郑彤, 章定国, 洪嘉振. 三维大变形梁系统的动力学建模与仿真[J]. 机械工程学报, 2016, 52(19):81-87)
    [9] YANG B J, CALISE A J, CRAIG J I. Adaptive output feedback control of a flexible base manipulator[J]. J. Guid. Control Dynam., 2007, 30(4):1068-1080
    [10] NI Z Y, LIU J G, WU Z G, et al. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method[J]. Chin. J. Aeronaut., 2019, 32(2):513-530
    [11] CHU M, JIA Q X, SUN H X. Backstepping control for flexible joint with friction using wavelet neural networks and L2-gain approach[J]. Asian J. Control, 2017, 20(2):856-866
    [12] YU X Y, CHEN L. Observer-based two-time scale robust control of free-flying flexible-joint space manipulators with external disturbances[J]. Robotica, 2017, 35(11):2201
    [13] HUANG Xiaoqin, CHEN Li. Finite time control of space robot with elastic base and flexible arms[J]. Chin. J. Space Sci., 2019, 39(3):399-406(黄小琴, 陈力. 基座与臂杆全弹性空间机器人的有限时间控制[J]. 空间科学学报, 2019, 39(3):399-406)
    [14] FU Xiaodong, CHEN Li. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration[J]. Chin. J. Theoret. Appl. Mech., 2020, 52(1):171-183(付晓东, 陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制[J]. 力学学报, 2020, 52(1):171-183)
    [15] WANG H H, SU Y X, ZHANG L Y. Global output feedback finite-time regulation of robot manipulators under actuator constraints[J]. J. Dynam. Syst. Meas. Control:Trans. ASME, 2017, 139(6):1-10
    [16] FU X D, CHEN L. Repetitive learning control based on terminal sliding mode of space manipulator system with elastic base and two flexible joints[C]//70th International Astronautical Congress (IAC). Washington DC:United States, 2019
    [17] CALIFANO F, BIN M, MACCHELLI A, et al. Stability analysis of nonlinear repetitive control schemes[J]. IEEE Control Syst. Lett., 2018, 2(4):773-778
    [18] SUN Y G, QIANG H Y, MEI X, et al. Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems[J]. Neural Comput. Appl., 2018, 30(6):2003-2012
    [19] SPONG M W. Modeling and control of elastic joint robots[J]. J. Dynam. Syst. Meas. Control, 1987, 109(4):310-319
    [20] KELLY R, SANTIBANEZ V, LORIA A. Control of Robot Manipulators in Joint Space[M]. London:Springer Verlag, 2005
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2021-05-25
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回