留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第21~24太阳周4类空间天气事件爆发特征统计分析

苗娟 李志涛 任廷领 王昕

苗娟, 李志涛, 任廷领, 王昕. 第21~24太阳周4类空间天气事件爆发特征统计分析[J]. 空间科学学报, 2021, 41(6): 849-857. doi: 10.11728/cjss2021.06.849
引用本文: 苗娟, 李志涛, 任廷领, 王昕. 第21~24太阳周4类空间天气事件爆发特征统计分析[J]. 空间科学学报, 2021, 41(6): 849-857. doi: 10.11728/cjss2021.06.849
MIAO Juan, LI Zhitao, REN Tingling, WANG Xin. Statistical Analysis on Four Kinds of Space Weather Events during Solar Cycles 21~24[J]. Chinese Journal of Space Science, 2021, 41(6): 849-857. doi: 10.11728/cjss2021.06.849
Citation: MIAO Juan, LI Zhitao, REN Tingling, WANG Xin. Statistical Analysis on Four Kinds of Space Weather Events during Solar Cycles 21~24[J]. Chinese Journal of Space Science, 2021, 41(6): 849-857. doi: 10.11728/cjss2021.06.849

第21~24太阳周4类空间天气事件爆发特征统计分析

doi: 10.11728/cjss2021.06.849
详细信息
    作者简介:

    苗娟,E-mail:miaoj@nssc.ac.cn

  • 中图分类号: P353

Statistical Analysis on Four Kinds of Space Weather Events during Solar Cycles 21~24

  • 摘要: 对第21~24太阳周不同等级的太阳X射线耀斑事件、太阳质子事件、地磁暴事件及高能电子增强事件的爆发频次特征进行统计,结果表明:太阳周耀斑爆发的总数量与该太阳周的黑子数峰值呈正比,耀斑总数、X级耀斑事件数与峰值的相关系数分别为0.974,0.997;太阳质子事件主要发生在峰年前后1~2年,约占总发生次数的80%,峰值通量大于10pfu (1 pfu=1 cm-2·sr-1·s-1)的质子事件中,84%伴有耀斑爆发,并且主要伴随M或X级耀斑,少量伴随C级耀斑,峰值通量大于1000pfu的质子事件中,98%伴随M或X级耀斑,并且以X级耀斑为主;第21,22,23和24太阳周发生地磁暴最频繁的时间分别在1982,1991,2003年和2015年,分别滞后黑子数峰值时间3年、2年、2年和1年;72%的高能电子增强事件发生在太阳周下降期,24%的高能电子增强事件发生在太阳周上升期.

     

  • [1] LINGRI D, MAVROMICHALAKI D, BELOV A, et al. Solar activity parameters and associated forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24[J]. Solar Phys., 2016, 291:1025-1041
    [2] NAT Gopalswamy, HONG Xie, SACHIKO Akiyama, et al. Major solar eruptions and high-energy particle events during solar cycle 24[J]. Earth, Planet. Space, 2014, 66:104
    [3] PRASANNA S S, SHANMUGARAJU A. Study of intensive solar flares in the rise phase of solar cycle 23 and 24 and other activities[J]. Astrophys. Space Sci., 2016, 361:78
    [4] YAN Xu, WERNER Pötzi, HEWEI Zhang, et al. Collective study of polar crown filaments in the past four solar cycles[J]. Astrophys. J. Lett., 2018, 862:23
    [5] LAMY P, FLOYD O, QUÉMERAIS E, et al. Coronal mass ejections and solar wind mass fluxes over the heliosphere during solar cycles 23 and 24(1996-2014)[J]. J. Geophys. Res., 2016, 122:50-62
    [6] LARIO D, DECKER R B, ROELOF E C, et al. Large energetic particle pressures in solar cycles 23 and 24[J]. J. Phys.:Conf. Ser., 2017, 900(1).DOI: 10.1088/17426596/900/1/012012
    [7] GOPALSWAMY N, YASHIRO S, XIE H S, et al. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24[J]. J. Geophys. Res. Space Phys., 2015, 120:9221-9245
    [8] LE Guiming, CAI Ziyu, WANG Huaning, et al. Solar cycle distribution of great geomagnetic storms[J]. Astrophys. Space Sci., 2012, 339:151-156
    [9] BILL Swalwell, SILVIA Dalla, STEPHEN Kahler, et al. The reported durations of GOES Soft X-Ray flares in different solar cycles[J]. Space Weather, 2018, 16:660-666
    [10] LE GuiMing, WANG Hongyan, BAI Tienan. Relationship between solar proton evens and the associated solar flares[J]. Chin. J. Space Sci., 2018, 38(4):437-443(乐贵明, 王鸿雁, 白铁南. 太阳质子事件与太阳耀斑的关系[J]. 空间科学学报, 2018, 38(4):437-443)
    [11] PAULIKAS G A, BLAICE J B. Efects of the solar wind on magnetospheric dynamics:energetic electrons at the 500 synchronous orbit[C]//Quantitative Modeling of Magnetospheric Processes. Washington:AGU, 1979:180-202
    [12] BAKER D N, LI X, TURNER N, et al. Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere:ISTP coordinated measurements[J]. J. Geophys. Res., 1997, 102(A7):14141-14148
    [13] LI Xinlin, TEMERIN M, BAKER D N, et al. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements[J]. Geophys. Res. Lett., 2001, 28(9):1887-1890
    [14] ZHENG Jinlei, ZHONG Qiuzhen, CHEN Liangxu, et al. Analysis on relativistic electron flux enhancement event at GEO in April 2010[J]. Chin. J. Space Sci., 2012, 32(4):488-500(郑金磊, 钟秋珍, 陈良旭, 等. 2010年4月地球同步轨道相对论电子增强事件分析[J]. 空间科学学报, 2012, 32(4):488-500)
    [15] ALEXAKIS P, MAVROMICHALAKI H. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycle 23 and 24[J]. Astrophys. Space Sci., 2019, 364:187
    [16] CARRINGTON R C. Description of a singular appearance seen in the sun on September 1, 1859[J]. Month. Not. Royal Astron. Soc., 1859, 20:13-15
    [17] HODGSON R. On a curious appearance seen in the sun[J]. Month. Not. Royal Astron. Soc., 1859, 20:15-16
    [18] GARCIA H A. Temperature and emission measure from GOES soft X-ray measurements[J]. Solar Phys., 1994, 154:275-308
    [19] CLIVER E. Solar flare classification[J]. Encyclopedia Astron. Astrophys., 2000. DOI: 10.1888/0333750888/2285
    [20] TU chuanyi. Solar Terrestrial Space Physics[M]. Beijing:Science Press, 1998(涂传诒. 日地空间物理[M]. 北京:科学出版社, 1998)
    [21] LI Rong, CUI Yanmei, HE Han. Statistic analysis on solar activity parameters with solar flare and solar proton event[J]. Sci. Technol. Eng., 2009, 9(15):4287-4291(李蓉, 崔延美, 贺晗. 太阳活动区参量与太阳耀斑和太阳质子事件的相关性统计分析[J]. 科学技术与工程, 9(15):4287-4291)
    [22] BAKER D N, PULKKINEN T I, LI X, et al. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events:ISTP[J]. J. Geophys. Res., 1998, 103(A8):17279-17291
    [23] BAKER D N. How to cope with space weather[J]. J. Sci., 2002, 297:1486-1487
    [24] LI Xinlin, BAKER D N, TEREMIN M, et al. Rapid enhancements of relativistic electrons deep in the magnetosphere during the May 15, 1997, magnetic storm[J]. J. Geophys. Res., 1999, 104(A3):4467-4476
    [25] XUE Bingsen, YE Zonghai. Forecast of the enhancement of relativistic electron at the geosynchronous orbit[J]. Chin. J. Space Sci., 2004, 24(4):283-288(薛炳森, 叶宗海. 地球同步轨道高能电子增强事件预报方法[J]. 空间科学学报, 2004, 24(4):283-288)
  • 加载中
计量
  • 文章访问数:  420
  • HTML全文浏览量:  102
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2021-04-06
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回