留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加正交电磁场等离子体中电磁波透射特性

张洁 赵善超 张国栋

张洁, 赵善超, 张国栋. 外加正交电磁场等离子体中电磁波透射特性[J]. 空间科学学报, 2021, 41(6): 881-886. doi: 10.11728/cjss2021.06.881
引用本文: 张洁, 赵善超, 张国栋. 外加正交电磁场等离子体中电磁波透射特性[J]. 空间科学学报, 2021, 41(6): 881-886. doi: 10.11728/cjss2021.06.881
ZHANG Jie, ZHAO Shanchao, ZHANG Guodong. Transmission Characteristics of Electromagnetic Waves in Plasma with External Orthogonal Electromagnetic Fields[J]. Journal of Space Science, 2021, 41(6): 881-886. doi: 10.11728/cjss2021.06.881
Citation: ZHANG Jie, ZHAO Shanchao, ZHANG Guodong. Transmission Characteristics of Electromagnetic Waves in Plasma with External Orthogonal Electromagnetic Fields[J]. Journal of Space Science, 2021, 41(6): 881-886. doi: 10.11728/cjss2021.06.881

外加正交电磁场等离子体中电磁波透射特性

doi: 10.11728/cjss2021.06.881
基金项目: 

甘肃省科技计划项目(20JR10RA080)和西北师范大学青年教师能力提升计划项目(NWNU-LKQN-17-14)共同资助

详细信息
    作者简介:

    张洁,E-mail:zhangjie@nwnu.edu.cn

  • 中图分类号: P354

Transmission Characteristics of Electromagnetic Waves in Plasma with External Orthogonal Electromagnetic Fields

  • 摘要: 在基于磁流体动力学和电磁波传播理论的基础上,针对航天飞行器再入过程中的黑障问题,提出了一种物理模型.利用数值分析方法,研究电磁窗周围的电子密度在不同的飞行器轴向距离下,随着飞行器法向距离增加呈现出的变化趋势;改变外加电场和磁场的交叉角度,分析不同角度下电磁窗周围电子密度的变化趋势;研究有外加正交电磁场的电子密度与无外加电磁场电子密度比值的变化趋势和电磁波衰减的变化趋势.结果表明:当外加正交电磁场时,接收天线周围的电子密度随飞行器法向距离的增加而不断减小,其与无外加电磁场时电子密度之比呈现不断下降的趋势;电磁波的衰减在不同飞行高度和外加磁场强度下,随着电磁波频率的增加而不断减小.这为减缓“黑障”问题提供了一种新的方法.

     

  • [1] JIANG Jin, CHEN Changxing, ZHOU Tianxiang, et al. Study on atmospheric window of millimeter wave propagation in near space plasma sheath[J]. Chin. J. Space Sci., 2016, 36(1):56-62(蒋金, 陈长兴, 周天翔, 等. 毫米波大气窗口在临近空间等离子体鞘套中的传播特性[J]. 空间科学学报, 2016, 36(1):56-62)
    [2] LING Yunfei, CHEN Changxing, JIANG Jin. Properties of C-band wave propagation in plasma sheath with different incidence angle[J]. Chin. J. Space Sci., 2016, 36(6):904-908(凌云飞, 陈长兴, 蒋金. 不同入射角度下等离子鞘套中C波段电磁波传输特性[J]. 空间科学学报, 2016, 36(6):904-908)
    [3] GENG Xingning, XU Degang, LI Xingning, et al. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. High Power Laster Part. Beams, 2020, 32(3):190291(耿兴宁, 徐德刚, 李杏宁, 等. 太赫兹波在飞行器等离子体鞘套中的传输特性[J]. 强激光与粒子束, 2020, 32(3):190291)
    [4] YU Zhefeng, SUN Liangkui, MA Ping, et al. Influence of blackout on communication security and several possible solutions[J]. Infrared, 2017, 38(2):39-45(于哲峰, 孙良奎, 马平, 等. 黑障对通信安全的影响及几种可能的解决方案[J]. 红外, 2017, 38(2):39-45)
    [5] ZHOU Yong, PAN Yurong, LI Chunjian. Propagation attenuation of electromagnetic waves in plasma[J]. Modern Radar, 2019, 41(2):1-6(周勇, 潘昱融, 李纯健. 电磁波在等离子体中的传播衰减[J]. 现代雷达, 2019, 41(2):1-6)
    [6] ZHENG Ling, ZHAO Qing, LUO Xiangang, et al. Theoretical and experimental studies of electromagnetic wave transmission in plasma[J]. Acta Phys. Sin., 2012, 61(15):155203(郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论与实验研究[J]. 物理学报, 2012, 61(15):155203)
    [7] HODARA H. The use of magnetic fields in the elimination of the re-entry radio blackout[J]. Proc. IRE, 1961, 49(12):1825-1830
    [8] LIU Jiangfan, XI Xiaoli, WAN Guobin, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Trans. Plasma Sci., 2011, 39 (3):852-855
    [9] YANG Yongchang. ZT-FDTD Method to Analyze the Influence of Spacecraft Reentry Plasma Sheath on Communication Signals[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(杨永常. ZT-FDTD法分析航天器再入等离子体鞘套对通信信号的影响[D]. 南京:南京航空航天大学, 2010)
    [10] MA Ping, ZENG Xuejun, SHI Anhua, et al. Experimental study on transmission characteristics of electromagnetic wave in plasma high temperature gas[J]. J. Exper. Fluid Mech., 2010, 24(5):51-54(马平, 曾学军, 石安华, 等. 电磁波在等离子体高温气体中传输特性试验研究[J]. 实验流体力学, 2010, 24(5):51-54)
    [11] YU Zhefeng, MA Ping, ZHANG Zhicheng, et al. Research on microwave transmission in thin layer plasma[J]. J. Exper. Fluid Mech., 2013, 27(3):60-64(于哲峰, 马平, 张志成, 等. 微波在薄层等离子体中传输效应研究[J]. 实验流体力学, 2013, 27(3):60-64)
    [12] LEMMER K M, GALLIMORE A D, SMITH T B, et al. Experimental results for communications blackout amelioration using crossed electric and magnetic Fields[J]. J. Spacec. Rockets, 2009, 46(6):1100-1109
    [13] KEIDAR M, KIM M, BOYD I D. Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights[J]. J. Spacec. Rockets, 2008, 45(3):445-453
    [14] KIM M. Electromagnetic Manipulation of Plasma Layer for Re-Entry Blackout Mitigation[M]. Michigan:University of Michigan, 2009
    [15] BITTENCOURT J A. Plasma Conductivity and Diffuflion[M]. New York:Springer, 2004
    [16] CHENG Jiajun, JIN Ke, KOU Yong, et al. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere[J]. J. Appl. Phys., 2017, 121(9):093301. DOI: 10.1063/1.4976213
    [17] CAMBEL A B. Plasma Physics and Magneto-fluid-mechanics[M]. New York:McGraw-Hill Book Company, 1963
    [18] CHEN Jiamin, YUAN Kai, SHEN Linfang, et al. Studies of terahertz wave propagation in realistic reentry plasma sheath[J]. Prog. Electromag. Res., 2016, 157:21-29
    [19] BO Yong, ZHAO Qing, LUO Xiangang, et al. Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel[J]. Acta Phys. Sin., 2016, 65(5):055201(薄勇, 赵青, 罗先刚, 等. 电磁波在时变磁化等离子体信道中通信性能的实验研究[J]. 物理学报, 2016, 65(5):055201)
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-09-09
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回