留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安第斯山上空平流层山地波统计特征的AIRS观测研究

黄丑月 张绍东 黄春明 黄开明 龚韵

黄丑月, 张绍东, 黄春明, 黄开明, 龚韵. 安第斯山上空平流层山地波统计特征的AIRS观测研究[J]. 空间科学学报, 2021, 41(6): 911-919. doi: 10.11728/cjss2021.06.911
引用本文: 黄丑月, 张绍东, 黄春明, 黄开明, 龚韵. 安第斯山上空平流层山地波统计特征的AIRS观测研究[J]. 空间科学学报, 2021, 41(6): 911-919. doi: 10.11728/cjss2021.06.911
HUANG Chouyue, ZHANG Shaodong, HUANG Chunming, HUANG Kaiming, GONG Yun. Statistical Characteristics of Stratospheric Mountain Waves over Southern Andes Based on AIRS Observations[J]. Journal of Space Science, 2021, 41(6): 911-919. doi: 10.11728/cjss2021.06.911
Citation: HUANG Chouyue, ZHANG Shaodong, HUANG Chunming, HUANG Kaiming, GONG Yun. Statistical Characteristics of Stratospheric Mountain Waves over Southern Andes Based on AIRS Observations[J]. Journal of Space Science, 2021, 41(6): 911-919. doi: 10.11728/cjss2021.06.911

安第斯山上空平流层山地波统计特征的AIRS观测研究

doi: 10.11728/cjss2021.06.911
基金项目: 

国家自然科学基金项目资助(41874177)

详细信息
    作者简介:

    黄丑月,E-mail:huangcy@whu.edu.cn

    通讯作者:

    张绍东,E-mail:zsd@whu.edu.cn

  • 中图分类号: P352

Statistical Characteristics of Stratospheric Mountain Waves over Southern Andes Based on AIRS Observations

  • 摘要: 利用AIRS红外探测仪在2013—2018年的辐射测量数据,对安第斯山20km,27km,35km及41km高度的山地波进行个例研究和统计分析.观测结果表明安第斯山上空山地波主要发生在5—10月,月平均水平波长、垂直波长及动量通量均没有明显的年际变化.水平波长在5月和10月相比6—9月较小,垂直波长和动量通量5—7月逐渐升高,达到峰值后在8—10月逐渐下降.在20~41km范围内,水平波长从43.5~53.9km缓慢升高至89.3~176.8km,垂直波长从7.4~14.7km上升至7.4~29.7km,动量通量由376.0~801.3mPa显著下降至10.4~239.3mPa.总体而言,山地波在向上传播的过程中,水平波长缓慢增加,在逆风传播的情况下,受到背景风场影响垂直波长随高度升高而增大.动量通量随高度升高显著下降,说明安第斯山山地波向上传播的同时伴有强烈耗散,耗散的能量将储存在背景大气中,对高平流层甚至中间层产生重要影响.

     

  • [1] HOLTON J R. The role of gravity wave induced drag and diffusion on the momentum budget of the mesosphere[J]. J. Atmos. Sci., 1982, 39(4):791-799
    [2] HOLTON J R. The Influence of gravity wave breaking on the general circulation of the middle atmosphere[J]. J. Atmos. Sci., 1983, 40(10):2497-2507
    [3] CARIOLLE D, MULLER S, CAYLA F, et al. Mountain waves, polar stratospheric clouds, and the ozone depletion over Antarctica[J]. J. Geophys. Res., 1989, 94(D9).DOI: 10.1029/JD094ID09P11233
    [4] PREUSSE P, DöRNBRACK A, ECKERMANN S D, et al. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study[J]. J. Geophys. Res. Atmos., 2002, 107(D23). DOI: 10.1029/2001JD000699
    [5] ECKERMANN S D, MA J, WU D L, et al. A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere:evidence of the effects of directional wind shear[J]. Quart. J. Royal Meteorol. Soc., 2007, 133(629):1959-1975
    [6] ALEXANDER M J, GILLE J, CAVANAUGH C, et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations[J]. J. Geophys. Res. Atmos., 2008, 113(D15).DOI: 10.1029/2007JD008807
    [7] KUMAR K N, RAMKUMAR T K, KRISHNAIAH M. Analysis of large-amplitude stratospheric mountain wave event observed from the AIRS and MLS sounders over the western Himalayan region[J]. J. Geophys. Res. Atmos., 2012, 117(D22):22102
    [8] GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
    [9] ALEXANDER M J, TEITELBAUM H. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula[J]. J. Geophys. Res. Atmos., 2007, 112(21).DOI: 10.1029/2006JD008368
    [10] HOFFMANN L, GRIMSDELL A W, ALEXANDER M J. Stratospheric gravity waves at Southern Hemisphere orographic hotspots:2003-2014 AIRS/Aqua observations[J]. Atmos. Chem. Phys., 2016, 16(14):9381-9397
    [11] ESPINOZA J C, GARREAUD R, POVEDA G, et al. Hydroclimate of the andes part I:main climatic features[J]. Front. Earth Sci., 2020, 8(64).DOI: 10.3389/FEART.2020.00064
    [12] AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua mission:design, science objective, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
    [13] ALEXANDER M J, BARNET C. Using satellite observations to constrain parameterizations of gravity wave effects for global models[J]. J. Atmos. Sci., 2007, 64(5):1652-1665
    [14] HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. J. Geophys. Res. Atmos., 2010, 115(D20111).DOI: 10.1029/2010JD014401
    [15] HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. J. Geophys. Res. Atmos., 2013, 118(2):416-434
    [16] STROW L L, HANNON S E, MACHADO D, et al. Validation of the Atmospheric Infrared Sounder radiative transfer algorithm[J]. J. Geophys. Res., 2006, 111(D9). DOI: 10.1029/2005JD006146
    [17] HOFFMANN L. ALEXANDER M J. Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies[J]. J. Geophys. Res. Atmos., 2009, 114(D07105). DOI: 10.1029/2008JD011241
    [18] ECKERMANN S D. Global measurements of stratospheric mountain waves from space[J]. Science, 1999, 286(5444):1534-1537
    [19] SATO K, TSUCHIYA C, ALEXANDER M J, et al. Climatology and ENSO-related interannual variability of gravity waves in the Southern Hemisphere subtropical stratosphere revealed by high-resolution AIRS observations[J]. J. Geophys. Res. Atmos., 2016, 121(13):7622-7640
    [20] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):DOI: 10.1029/2001RG000106
    [21] ALEXANDER M J, ECKERMANN S D, BROUTMAN D, et al. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite[J]. Geophys. Res. Lett., 2009, 36(12):L12816
    [22] DROB D P, EMMERT J T, MERIWETHER J W, et al. An update to the Horizontal Wind Model (HWM):the quiet time thermosphere[J]. Earth Space Sci., 2015, 2(7):301-319
    [23] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res. Space Phys., 2002, 107(A12):DOI: 10.1029/2002JA009430
    [24] ERN M, PREUSSE P, ALEXANDER M J, et al. Absolute values of gravity wave momentum flux derived from satellite data[J]. J. Geophys. Res. Atmos., 2004, 109(D20103):DOI: 10.1029/2004JD004752
    [25] ALEXANDER M J, TEITELBAUM H. Three-dimensional properties of Andes mountain waves observed by satellite:a case study[J]. J. Geophys. Res. Atmos., 2011, 116 (D23).DOI: 10.1029/2011JD016151
    [26] WRIGHT C J, HINDLEY N P, HOFFMANN L, et al. Exploring gravity wave characteristics in 3-D using a novel S-transform technique:AIRS/Aqua measurements over the Southern Andes and Drake Passage[J]. Atmos. Chem. Phys., 2017, 17(13):8553-8575
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  7
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 修回日期:  2021-10-11
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回