留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双星跟飞立体成像的构形保持控制

陈高杰 常琳 李静 杨秀彬 杨春雷 黎艳博

陈高杰, 常琳, 李静, 杨秀彬, 杨春雷, 黎艳博. 双星跟飞立体成像的构形保持控制[J]. 空间科学学报, 2021, 41(6): 954-961. doi: 10.11728/cjss2021.06.954
引用本文: 陈高杰, 常琳, 李静, 杨秀彬, 杨春雷, 黎艳博. 双星跟飞立体成像的构形保持控制[J]. 空间科学学报, 2021, 41(6): 954-961. doi: 10.11728/cjss2021.06.954
CHEN Gaojie, CHANG Lin, LI Jing, YANG Xiubin, YANG Chunlei, LI Yanbo. Configuration Keeping Control of Stereo Imaging with Dual-satellite Following Flying Formation[J]. Journal of Space Science, 2021, 41(6): 954-961. doi: 10.11728/cjss2021.06.954
Citation: CHEN Gaojie, CHANG Lin, LI Jing, YANG Xiubin, YANG Chunlei, LI Yanbo. Configuration Keeping Control of Stereo Imaging with Dual-satellite Following Flying Formation[J]. Journal of Space Science, 2021, 41(6): 954-961. doi: 10.11728/cjss2021.06.954

双星跟飞立体成像的构形保持控制

doi: 10.11728/cjss2021.06.954
基金项目: 

国家自然科学基金青年科学基金项目资助(61705222)

详细信息
    作者简介:

    陈高杰,E-mail:1515017759@qq.com

  • 中图分类号: V448

Configuration Keeping Control of Stereo Imaging with Dual-satellite Following Flying Formation

  • 摘要: 针对强干扰及输出饱和条件下微小双星立体成像的构形保持问题,提出一种基于观测器的抗干扰复合控制策略.根据立体成像双星跟飞运动机理,建立双星相对运动动力学模型;设计了一种自适应干扰观测器,可同时实现系统状态和干扰信息的在线估计,并采用Lyapunov稳定性理论和线性矩阵不等式技术给出观测器存在条件.采用极点配置方法改善观测器系统的动态性能,引入指数衰减因子提高控制器的收敛速度.考虑执行机构的输出饱和特性,提出一种加权PD+LQR反馈与干扰前馈补偿的复合控制策略,能够抑制未知干扰的影响,保证系统的动态和稳态性能,具备双星构形保持控制能力.仿真结果验证了所提算法的有效性.

     

  • [1] LIN Laixing, ZHANG Xiaolin. Current status and developing trends of nanosatellites formation flying[J]. Spacecraft Eng., 2017, 26(5):65-73(林来兴, 张小琳. 纳型卫星编队飞行技术现状及发展趋势[J]. 航天器工程, 2017, 26(5):65-73)
    [2] LIU GuoPing, ZHANG Shijie. A survey on formation control of small satellites[J]. Proc. IEEE, 2018, 106(3):440
    [3] SUN Jun, HUANG Jing, ZHANG Xianliang, et al. Dynamics and control of spacecraft formation flying in Earth orbit[J]. Mech. Eng., 2019, 41(2):117-136(孙俊, 黄静, 张宪亮, 等. 地球轨道航天器编队飞行动力学与控制研究综述[J]. 力学与实践, 2019, 41(2):117-136)
    [4] SAPTARSHI Bandyopadhyay, GIRI P S, REBECCA Foust, et al. A review of impending small satellite formation flying missions[C]//53rd AIAA Aerospace Sciences Meeting. Kissimmee:AIAA, 2015:1-17
    [5] ZHANG Renwei. Dynamics and Control of Satellite Orbit Attitude[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1998(章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998)
    [6] LI Liang, WANG Hong, LIU Liangyu, et al. Development of micro-satellite constellation and formation technologies[J]. Space Elect. Technol., 2017, 14(1):13-14(李亮, 王洪, 刘良玉, 等. 微小卫星星座与编队技术发展[J]. 空间电子技术, 2017, 14(1):13-14)
    [7] KE Z, ZHENQI H, MEIBO L. Study on maintaining formations during satellite formation flying based on SDRE and LQR[J]. Open Phys., 2017, 15(1):394-399
    [8] WANG Yuedong. Research on Two-satellite Formation Control Based on Lyapunov Function[D]. Taiyuan:North University of China, 2017(王月东. 基于李雅普诺夫函数的双星编队控制研究[D]. 太原:中北大学, 2017)
    [9] XING Jianjun, YU Yang, WANG Yi, et al. Robust control of low earth orbit satellites formation based on improved linear quadratic regulator[J]. J. Natl. Defense Univ. Sci. Technol., 2016, 38(3):100-106(杏建军, 于洋, 王祎, 等. 基于改进线性二次型调节器的近地轨道编队卫星鲁棒控制[J]. 国防科技大学学报, 2016, 38(3):100-106)
    [10] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerosp. Sci. Technol., 2018, 76:1-9
    [11] WANG Youliang, ZHENG Jianhua, LI Mingtao. Analytical formation keeping control strategy for micro-satellites[J]. Space Sci., 2018, 38(6):925-933(王有亮, 郑建华, 李明涛. 微小卫星编队飞行解析构型维持控制方法[J]. 空间科学学报, 2018, 38(6):925-933)
    [12] STARIN S R, YEDAVALLI R K, SPARKS A G. Design of a LQR controller of reduced inputs for multiple spacecraft formation flying[C]//American Control Conference. Arlington:IEEE, 2001:1327-1332
    [13] CUI Wenhao. Research on the Satellite Formation Reconfiguration and Keeping under J2 Perturbation[D]. Harbin:Harbin Engineering University, 2019
    [14] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerosp. Sci. Technol., 2018, 76:82-90
    [15] YAO Junyu. Finite-time Attitude Control for Tethered Satellite System in Deep Space[D]. Harbin:Harbin Institute of Technology, 2016
    [16] HU Q L, NIU G L, WANG C L. Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation[J]. Aerosp. Sci. Technol., 2018, 75:245-253
    [17] SHI K K, LIU C, BIGGS J D, et al. Observer-based control for spacecraft electromagnetic docking[J]. Aerosp. Sci. Technol., 2020, 99:105759
    [18] ZHANG Ke, COCQUEMPOT Vincent, JIANG Bin. Adjustable parameter-based multi-objective fault estimation observer design for Continuous-Time/Discrete-Time dynamic systems[J]. Int. J. Control Automat. Syst., 2017, 15(3):1077-1088
    [19] ZHANG Siying, GAO Liqun. Modern Control Theory[M]. Beijing:Tsinghua University Press, 2017
    [20] MARCELO Dias Pedroso, CLAUDINOR Bitencourt Nascimento, ANGELO Marcelo Tusset, et al. A hyperbolic tangent adaptive PID+ LQR control applied to a step-down converter using poles placement design implemented in fpga[J]. Math. Probl. Eng., 2013, 2013(13):1
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2021-05-26
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回