留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法

闫文康 闫毅 范亚楠 姚秀娟 高翔 孙文

闫文康, 闫毅, 范亚楠, 姚秀娟, 高翔, 孙文. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968
引用本文: 闫文康, 闫毅, 范亚楠, 姚秀娟, 高翔, 孙文. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968
YAN Wenkang, YAN Yi, FAN Yanan, YAO Xiujuan, GAO Xiang, SUN Wen. A Modulation Recognition Algorithm Based on Wavelet Transform Entropy and High-order Cumulant for Satellite Signal Modulation[J]. Journal of Space Science, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968
Citation: YAN Wenkang, YAN Yi, FAN Yanan, YAO Xiujuan, GAO Xiang, SUN Wen. A Modulation Recognition Algorithm Based on Wavelet Transform Entropy and High-order Cumulant for Satellite Signal Modulation[J]. Journal of Space Science, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968

基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法

doi: 10.11728/cjss2021.06.968
基金项目: 

中国科学院空间科学战略先导科技专项资助(XDA15060100)

详细信息
    作者简介:

    闫毅,E-mail:yanyi@nssc.ac.cn

  • 中图分类号: P510.4

A Modulation Recognition Algorithm Based on Wavelet Transform Entropy and High-order Cumulant for Satellite Signal Modulation

  • 摘要: 调制识别是信号检测与解调的关键环节,针对卫星调制中采用的MAPSK,MQAM,MFSK,MPSK方式,提出了一种计算小波变换熵值并结合高阶累积量的联合调制识别算法.根据小波变换对时频信息敏感的特点,不同调制方式高阶累积量计算结果的区分性以及不同复杂度的调制信号熵值结果不同,分析了以上4类调制信号的计算结果,提出了基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法.计算调制信号小波系数,据此计算熵值,实现对调制信号的类别划分,使用高阶累积量实现类别内的信号分类.经过仿真分析,可实现在8dB以上达到0.9识别率的效果,该方法对高阶(64阶调制)信号识别具有一定借鉴意义.

     

  • [1] YIN C, LI B, LI Y, et al. Modulation classification of MQAM signals based on density spectrum of the constellations(A)[C]//Proceedings of the 20102nd International Conference on Future Computer and Communication. Wuhan:IEEE, 2010
    [2] DOBRE O A, ABDI A, BAR-NESS Y, et al. Survey of automatic modulation classification techniques:classical approaches and new trends[J]. IET Commun., 2007, 1(2):137-156
    [3] WANG Can, FAN Xiaoguang, GU Qiongqiong, et al. A modulation recognition method with low SNR[J]. Guid. Fuze, 2018, 39:15-20
    [4] ALI A K, ERĆ CELEBI E. Automatic modulation recognition of DVB-S2X standard-specific with an APSK-based neural network classifier[J]. Measurement, 2020, 107257:0263-2241
    [5] HAMEED F, DOBRE O A, POPESCU D C. On the likelihood-based approach to modulation classification[J]. IEEE Trans. Wireless Commun., 2009, 8(12):5884-5892
    [6] ZHANG Yanqiu. Modulation recognition of digital signals based on high order cumulants[J]. Inf. Commun., 2016, 2:27-30
    [7] ABDELMUTALAB A, ASSALEH K, EL-TARHUNI M. Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers[J]. Phys. Commun., 2016, 21:10-18
    [8] ALI A K, ERć CELEBI E. An M-QAM signal modulation recognition algorithm in AWGN channel[J]. Sci. Program., 2019, 2019:1-17
    [9] YUAN Lifen, NING Shuguang, HE Yigang, et al. Modulation recognition method basedon high-order cumulant feature learning[J]. Syst. Eng. Electron., 2019, 41(9):2122-2131
    [10] HO K C, PROKOPIW W, CHAN Y T. Modulation identification of digital signals by the wavelet transform[J]. IEEE Proceed. Radar Sonar Nav., 2000, 147(4):169-176
    [11] LI Xin, ZHANG Chuanwu, GAO Yong. Modulation mode recognition algorithm using logarithm in time-frequency domain[J]. Radio Eng., 2020, 50(12):1036-1041
    [12] TAN Xiaoheng, CHU Guoxing, ZHANG Xuejing, et al. Modulation recognition algorithm based on high-order cumulants and wavelet transform[J]. Syst. Eng. Elect., 2018, 40(1):171-177
    [13] SHU Chang, WANG Chenxue, GAO Yong. Modulation classification of MAPSK and QAM[J]. Commun. Technol., 2012, 45(12):37-40, 47
    [14] DOBRE O A, BAR-NESS Y, SU Wei. Higher-order cyclic cumulants for high order modulation classification[J]. IEEE Military Commun. Conference., 2003, 1:112-117
    [15] CHEN Huixin, PENG Jingjing, ZHENG Liming, et al. A modulation recognition algorithm based on the cumulant and entropy[J]. Guid. Fuze, 2018, 39(3):27-33, 55
    [16] HAZZA A, SHOAIB M, ALSHEBEILI S A, et al. An overview of feature-based methods for digital modulation classification[C]//20131st International Conference on Communications, Signal Processing, and their Applications (ICCSPA). Sharjah:IEEE, 2013
    [17] PARK C S, CHOI J H, NAH S P, et al. Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM[M]. Gangwon:IEEE, 2008
    [18] HASSAN K, DAYOUB I, HAMOUDA W, et al. Automatic modulation recognition using wavelet transform and neural networks in wireless systems January 2010 EURASIP[J]. J. Adv. Signal Process., 2010, 42. DOI: 10.1155/2010/532898
    [19] LI Yibing, GE Juan, LIN Yun. Modulation recognition using entropy features and SVM[J]. Syst. Eng. Elect., 2012, 34(8):1691-1695
    [20] ZHAO Xiongwen, GUO Chunxia, LI Jingchun. Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum[J]. J. Elect. Inform. Technol., 2016, 38(3):674-680
    [21] ZHANG Huadi, LOU Huaxun, Automatic modulation recognition algorithm for MQAM signal[J]. J. Commun., 2019, 40(8):200-211
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2021-03-31
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回