留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小天体的多种尺寸颗粒样品收集容器流域的数值模拟

杜永刚 闫春杰 王春勇 王琎

杜永刚, 闫春杰, 王春勇, 王琎. 小天体的多种尺寸颗粒样品收集容器流域的数值模拟[J]. 空间科学学报, 2021, 41(6): 983-987. doi: 10.11728/cjss2021.06.983
引用本文: 杜永刚, 闫春杰, 王春勇, 王琎. 小天体的多种尺寸颗粒样品收集容器流域的数值模拟[J]. 空间科学学报, 2021, 41(6): 983-987. doi: 10.11728/cjss2021.06.983
DU Yonggang, YAN Chunjie, WANG Chunyong, WANG Jin. Numerical Investigation on Collector of Asteroid's Particles with Various Sizes[J]. Chinese Journal of Space Science, 2021, 41(6): 983-987. doi: 10.11728/cjss2021.06.983
Citation: DU Yonggang, YAN Chunjie, WANG Chunyong, WANG Jin. Numerical Investigation on Collector of Asteroid's Particles with Various Sizes[J]. Chinese Journal of Space Science, 2021, 41(6): 983-987. doi: 10.11728/cjss2021.06.983

小天体的多种尺寸颗粒样品收集容器流域的数值模拟

doi: 10.11728/cjss2021.06.983
基金项目: 

国家重大科技专项工程项目资助

详细信息
    作者简介:

    杜永刚,E-mail:duygemail@163.com

  • 中图分类号: V476

Numerical Investigation on Collector of Asteroid's Particles with Various Sizes

  • 摘要: 采集小天体表面的样品并返回是当前小天体探测的核心目标之一,样品容器流域设计是氮气激励采样技术的关键.为了保证样品容器具备高效的收集性能,要求样品容器的流域设计能够对样品颗粒形成陷阱效应,并对样品颗粒进行有效的分级.旋风式样品收集容器方案利用旋风离心力和引导叶片的共同作用对样品颗粒进行收集和分级.为了验证这种方案在微重力环境下的性能和可行性,本文利用Fluent软件进行了流域的数值模拟.模拟结果表明:在确定容器的结构下,样品容器的最优氮气入口速度为0.6 m·s-1,容器在该速度下的样品收集效率达到99.7%.样品容器的流域具备很好的颗粒分级功能,对小于2mm的样品颗粒的捕获率超过了90%,其压力损失也在合理的范围之内.本文研究结果可为小天体采样任务提供借鉴.

     

  • [1] KATSUHIKO Tsuno, EISUKE Okumura. Lidar on Board Asteroid Explorer Hayabusa[R]. Tokyo:Institute of Space and Astronautical Science, 2006
    [2] HIROTAKA Sawada, RYUJI Okazaki, SHOGO Tachibana, et al. Hayabusa2 sampler:collection of asteroidal surface material[J]. Space Sci. Rev., 2017, 208:81-106
    [3] BIERHAUS E B, CLARK B C, HARRIS J W, et al. The OSIRIS-REx spacecraft and the Touch-and-Go Sample Acquisition Mechanism (TAGSAM)[J]. Space Sci. Rev., 2018, 214:80-107
    [4] LI Chunlai, LIU Jianjun, YAN Wei, et al. Overview of scientific objectives for minor planets exploration[J]. J. Deep Space Explor., 2019, 6(5):24-36
    [5] ZHAO YuHui, WANG Su, HU ShouCun, et al. A research on imaging strategy and imaging simulation of Toutatis in the Chang'E-2 Flyby mission[J]. Acta Astron. Sin., 2013, 54(5):45-52
    [6] YU Dengyun, ZHANG Xingwang, ZHANG Ming, et al. Development status and prospect of small celestial body sampling exploration techniques[J]. Spacecraft Eng., 2020, 29(2):9-18
    [7] DU Yonggang, YANG Zhenchun, FU Zhaohui. Technology of a sample vacuum encapsulation for deep space exploration[J]. Spacecraft Eng., 2014, 23(5):47-53
    [8] DU Yonggang, WANG Xuesong, YAN Chunjie, et al. The parameter calculation of the metal seal structure for the lunar sample encapsulation[J]. Chin. J. Vacuum Sci. Technol., 2021, 41(5):32-34
    [9] JI Jianghui, HU Shoucun. A review of the surface environment of small bodies in solar system[J]. Spacecraft Eng., 2019, 36(6):529-531
    [10] BORISOV N D, ZAKHAROV A V. Electrostatic charging and motion of dust near the surface of an asteroid[J]. Sol. Syst. Res., 2014, 48(1):22-32
    [11] SUGITA S, HONDA R, MOROTA T, et al. The geomorphology, color, and thermal properties of Ryugu:implications for parent-body processes[J]. Science, 2019, 364(6437):398-422
    [12] DELLAGIUSTINA D N, EMERY J P, GOLISH D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nat. Astron., 2019, 3(4):341-346
    [13] CUI Pingyuan, YUAN Xu, ZHU Shengying, et al. Research progress of small body autonomous landing techniques[J]. J. Astronaut., 2016, 37(7):5-13
    [14] SAITO J, MIYAMOTO H, NAKAMURA R, et al. Detailed images of asteroid 25143 Itokawa from Hayabusa[J]. Science, 2006, 312(5778):1341-1344
    [15] ZHENG Gangbiao, KANG Tianhe, CHAI Zhaoyun, et al. Applied the Rosin-Rammler distribution function to study on the law of coal dust particle-size distribution[J]. J. Taiyuan Univ. Technol., 2006, 37(5):317-319
  • 加载中
计量
  • 文章访问数:  415
  • HTML全文浏览量:  140
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-05-31
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回