Satellite telemetry parameter prediction based on improved LSTM-Attention
-
摘要:
由于卫星受到复杂空间环境以及卫星自身的影响,在轨异常和故障时有发生。地面系统通过卫星遥测参数序列预测未来航天器性能的变化趋势,对保障卫星的安全运行非常必要。针对卫星遥测参数序列具有趋势性和局部波动性以及易受到相关环境因素影响的特点,本文提出了基于改进LSTM-Attention 的预测模型,使用全局模型和局部模型分别获取遥测参数序列的趋势成分和局部波动成分,且利用对预测目标序列有影响的协变量使模型学习到更多的序列信息,提高了预测精度。此模型既可以对遥测参数序列提供点预测,又可以提供区间预测的结果。采用科学卫星真实遥测参数数据集和时间序列公开数据集进行实验验证,结果表明,该方法相比改进前算法取得了良好的效果。
Abstract:Due to the complex space environment and the influence of the satellite itself, satellites in-orbit anomalies and failures occur from time to time. It is necessary for the ground system to predict the changing trend of future spacecraft performance through satellite telemetry parameters to ensure the safe operation of satellites. Aiming at the characteristics of satellite telemetry data with trends, local fluctuations and being easily affected by other environmental factors, this paper proposes a prediction model based on improved LSTM-Attention. The global model and local model are used to obtain the trend component and local fluctuation component of the telemetry sequence respectively. Moreover, the model will learn more sequence information by using the covariates that have an impact on predicting the target sequence, which improves the prediction accuracy. This model can provide both interval forecasting and point forecasting results for telemetry series. The real telemetry parameter data set of scientific satellite and the public data sets of time series are used for experimental verification. The results show that the method has achieved good results compared with benchmark algorithms.
-

计量
- 文章访问数: 14
- HTML全文浏览量: 0
- PDF下载量: 7
- 被引次数: 0