留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Space Astronomy

ZHANG Shuangnan YI Shuxu

ZHANG Shuangnan, YI Shuxu. Space Astronomy. Chinese Journal of Space Science, 2022, 42(4): 588-607 doi: 10.11728/cjss2022.04.yg02
Citation: ZHANG Shuangnan, YI Shuxu. Space Astronomy. Chinese Journal of Space Science, 2022, 42(4): 588-607 doi: 10.11728/cjss2022.04.yg02

Space Astronomy

doi: 10.11728/cjss2022.04.yg02
More Information
  • Figure  1.  Schematic drawing of the DAMPE detector

    Figure  2.  Main payloads onboard Insight-HXMT. The 18 cylindrical NaI/CsI detectors located around the center are HE, the boxes on the lower left are LE and upper right ME

    Figure  3.  Design of GECAM mission which is composed of two microsatellites (GECAM-A and GECAM-B) (left). Currently, only GECAM-B is working. Layout of the GECAM spacecraft and scientific payloads, which include 25 gamma-ray detectors and 8 charges (right)

    Figure  4.  GECAM real-time light curve of gamma-ray burst downlinked through the Beidou navigation system (left). The low-latency GECAM localization map of a gamma-ray burst (GRB 211105 A, right)

    Figure  5.  Schematic drawing of PolarLight

    Figure  6.  Schematic drawing of the GRID payload

    Figure  7.  Layout of the “Lobster-eye X-ray Satellite”

    Figure  8.  Artistic view of the SVOM satellite

    Figure  9.  Layout of the Einstein Probe spacecraft and scientific payloads, which include 12 modules of WXT aligned with different directions and 2 coaligned modules of FXT

    Figure  10.  An artistic rendition of CSST in orbit (provided by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)

    Figure  11.  HERD payload

    Figure  12.  Design of the POLAR-2 two payloads. On the left, the European payload CAD model is shown, while the Chinese payload CAD model is shown on the right

    Figure  13.  Current optimizations of LyRIC: the optical design (upper left), the inside view (upper right); major specifications (lower left); the outlook (lower right). Taken from Ref. [29]

    Figure  14.  Artistic view of the eXTP satellite. The science payload consists of four instruments: the focused SFA and PFA telescopes arrays, the large area instrument LAD, and the WFM to monitor a large fraction of the sky

    Figure  15.  Expected acceptance of DAMPE-2 on gamma-ray observation

    Figure  16.  Artistic concept of the DSL array

    Table  1.   Summary of space astronomy missions/projects of China. Phase A-feasibility; Phase B-preliminary definition/design; Phase C-detailed definition/design; Phase D-qualification and flight model

    Name of projectLaunch timeStatusCategory
    DAMPE17 Dec. 2015In orbit1
    Insight-HXMT15 Jun. 2017In orbit1
    GECAM9 Dec. 2020In orbit1
    PolarLight29 Oct. 2018In orbit1
    GRID29 Oct. 2018 (GRID-01)
    6 Nov. 2020 (GRID-02)
    27 Feb. 2022 (GRID-03 b and GRID-04)
    In orbit1
    Lobster-eye X-ray Satellite2020 Jul. 25In orbit1
    SVOM2023Phase D2
    EP2023Phase D2
    CSST2023/2024Phase C2
    HERD2027Phase B3
    POLAR-22024 (European payload)
    2025 (Chinese payload)
    Early Phase D (European payload)
    Phase B (Chinese payload)
    3
    DIXEPhase A3
    LyRIC2025+Phase A3
    eXTP2027Phase B4
    DAMPE-22025–2026 (Suggested)4
    Earth2.0TBD4
    DSL2026Phase A4
    CHESTBD4
    下载: 导出CSV

    Table  2.   Major characteristics of the Insight-HXMT

    DetectorsLE: SCD, 384 cm2
    ME: Si-PIN, 952 cm2
    HE: NaI/CsI, 5000 cm2
    Energy range LE: 1–15 keV
    ME: 5–30 keV
    HE: 20–250 keV
    Time resolution HE: 25 μs
    ME: 280 μs
    LE: 1 ms
    Energy resolution LE: 2.5% @ 6 keV
    ME: 14% @ 20 keV
    HE: 19% @ 60 keV
    Field of view of one module LE: 6°×1.6°; 6°×4°, 60°×3°, blind
    ME: 4°×1°, 4°×4°, blind
    HE: 5.7°×1.1°, 5.7°×5.7°, blind
    Angular resolution (20σ source) < 5'
    Source location (20σ source) <1'
    Sensitivity (3σ, in 105 s) 0.5 mCrab (only statistical uncertainties included)
    Orbit Altitude: 550 km
    Attitude Inclination: 43°
    Three-axis stabilized
    Control precision: 0.1°
    Measurement accuracy: 0.01°
    Data rate LE: 3 Mbit·s–1
    ME: 3 Mbit·s
    HE: 300 kbit·s
    Payload mass 1000 kg
    Nominal mission lifetime 4 years
    Working mode Scan, pointing, GRB
    下载: 导出CSV

    Table  3.   Specifications of GECAM

    ParametersValuesNotes
    Orbit 600 km, 29°
    Life time 3 years Goal: 5 years
    GRD energy range 15 keV–5 MeV
    Field of view 60% all-sky For GECAM-B only
    Burst sensitivity <2×10–8 erg·cm–2·s–1 20 s, 10–1000 keV
    Burst localization accuracy <1° (1σ stat.) Flux:1×10–6 erg·cm–2·s–1, 10 s
    Absolute timing accuracy <3 μs
    Relative timing accuracy 0.1 μs Between detectors
    Time latency of
    trigger data
    60 s For the first BDS message
    Note 1 erg=10–7 J
    下载: 导出CSV

    Table  4.   Specifications of PolarLight

    Energy range2–8 keV
    Energy resolution 19% @ 6 keV
    Field of view 2.3° FWHM or 5.7° FWZR
    Gas mixture pure DME at 0.8 atm, 1 cm thick
    Window 100 μm beryllium
    GEM 100 μm pitch and 100 μm thick
    ASIC 50 μm pitch
    Modulation factor 0.42 @ 3.74 keV
    Weight 580 g
    Power 2.2 W
    Size 1 U (about 10 cm × 10 cm × 10 cm)
    下载: 导出CSV

    Table  5.   Specifications of GRID

    Energy range20 keV–2 MeV
    Energy resolution 20% FWHM @ 662 keV
    Field of view
    Scintillator Ce-doped Gd3(Al,Ga)5O12 (GAGG)
    SiPM J-60035 manufactured by SensL
    Payload size 0.5 U (about 10 cm × 10 cm × 5 cm)
    下载: 导出CSV

    Table  6.   Key parameters of “Lobster-eye X-ray Satellite”

    Dimension750 mm×500 mm×320 mm
    (2840 mm with solar panel)
    Power30 W
    OrbitLEO
    Optics2×2 MPO
    (f = 375 mm, A = 4 cm×4 cm)
    DetectorCCD
    1024 pixel×1024 pixel
    Field-of-view2°(with detector)
    Angular resolution<0.2°
    Energy range1–6 keV (in-orbit)
    Energy resolution<200 eV
    下载: 导出CSV

    Table  7.   Specifications of WXT and FXT

    ParametersWXTFXT
    Number of modules122
    Telescope opticLobster-eye MPOWolter-I
    DetectorCMOSCCD
    Field of view$ \geqslant $3600 square degrees$ \geqslant $38′(diameter)
    Focal length/mm)3751600
    Effective area @1.2 keV·cm–22.7300 (each module)
    Spatial resolution (1 keV)5′(FWHM)30″ (HPD)
    Bandpass/keV0.5–40.3–10
    E-resolution @1.25 keV (eV)170120
    Sensitivity/(erg·s–1·cm–2)1×10–11 @ 1 ks1×10–14 @10 ks
    Note 1 erg=10–7 J
    下载: 导出CSV

    Table  8.   HERD main specifications

    Energy range (e/γ)10 GeV–100 TeV (e)
    0.5 GeV–100 TeV (γ)
    Energy range (CR)30 GeV–PeV
    Angular resolution0.1° @10 GeV
    Charge resolution0.1– 0.3 c.u
    Energy resolution (e)1%@200 GeV
    Energy resolution (p)20%@100 GeV–PeV
    e/p separation106
    G.F. (e)>3 m2·sr@200 GeV
    G.F. (p)>2 m2·sr@100 TeV
    下载: 导出CSV

    Table  9.   Main anticipated technical performances of POLAR-2

    CharacteristicsInstrument
    HPDLPDBSD
    Detector sensitive material Plastic scintillator bars array DME or Xenon mixture LaBr3 crystal
    Energy range 30–800 keV 2–10 keV (potentially can be extended to
    30 keV depending on the gas)
    10–2000 keV
    Detection area 2000 cm2 ≥290 cm2 For each module≥40 cm2
    Field of view 50% sky 90°×90° 50% sky
    Energy resolution ≤25%@5.9 keV ≤18%@59.5 keV
    Dimensions 590×664×700 mm3 600×600×710 mm3
    下载: 导出CSV

    Table  10.   Key parameters of the preliminary payload design

    ParameterValueNotes
    Lower energy/keV 0.1 Goal
    Upper energy/keV 5 Point of optimization
    Energy resolution/eV < 6 Goal: 2 eV at 1 keV
    Field of view/(º)2 100 With mechanical collimator
    Effective area/cm2 > 0.5 Goal: 1 cm2
    Grasp/[cm2·(º)2] > 50 Goal: 100 cm2·(º)2
    Power/W 800 Peak: 1000 W
    Mass/kg 300 Goal: < 200 kg
    下载: 导出CSV

    Table  11.   Instrument configuration and key specifications

    InstrumentSFALADPFAWFM
    Configuration 9 telescopes 40 modules 4 telescopes 6 cameras
    Optics or Collimator Wolter-I, Nickel
    F = 5.25 m
    capillary-plate collimators Wolter-I, Nickel
    F = 5.25 m
    Coded mask
    Detector 19-pixel Silicon
    Drift Det. (SDD)
    SDD Gas Pixel Detector (GPD) SDD
    Energy range 0.5–10 keV 2–30 keV 2–8 keV 2–50 keV
    Effective area
    or FoV
    ≥0.6 m2@1–2 keV
    0.4 m2 @ 6 keV
    3.0 m2 at 8 keV 500 cm2 @ 2 keV
    300 cm2 @ 3 keV
    FoV ≥ 3.1 sr
    Energy resolution (FWHM) 180 eV @ 6 keV 260 eV @ 6 keV 25% @ 6 keV ≤500 eV@6 keV
    Time resolution 10 µs 10 µs 10 µs 10 µs
    Remarks Unprecedented effective area in the soft X-ray
    energy range
    High throughput;
    effective area is a
    factor of 5–10 larger
    than any previous
    mission
    About 5 times the area
    of IXPE, X-ray polar. Pathfinder by NASA; Min. Detectable Polarization about 3%
    in 2–8 keV range
    Peak sensitivity: 1 Crab in 1 s and 5 mCrab in 50 ks (5σ source).Point source localization ≤ 1′
    下载: 导出CSV

    Table  12.   Summary of CHES

    Science caseHabitable exoplanets orbiting nearby stars
    Science objectives To discover habitable Earths about nearby solar-type stars
    To conduct a comprehensive survey and census on the nearby planetary systems
    Extended: cosmology, dark matter and black holes
    Overview Spacecraft at L2 for 5 years
    Optical telescope (500–900 nm);
    Micro-arcsecond astrometry (1 μas)
    Point and stare strategy to enable relative astrometry
    What makes CHES unique Ultra-high-precision relative astrometry simply reachable from space: 0.3 μas (habitable
    Earths about the stars at 10 pc)
    To obtain true masses and orbital architecture (inclinations, etc.) of habitable-zone terrestrial
    planets and to conduct the census and characterization of nearby planetary systems
    Extended: Measurements of orbits and distances to reveal the interiors of neutron, etc
    Primary observational targets closeby F, G, K stellar systems (100 stars with 10 pc)
    Extended: ultra-faint dwarf galaxies, neutron stars in X-ray binaries, etc.
    Scientific Payload Coaxial three-reflection TMA system
    Primary mirror: D = 1.2 m diameter
    Long focal length: f = 36 m
    FoV: 0.44°×0.44°, with 6 to 8 reference stars; focal plane with 81 scientific CMOS
    detectors (4000×4000, ≥50 frame·s–1)
    Nyquist sampling of the PSF
    Metrology calibration of the Focal Plane Array (FPA): relative positions of pixels at the micro-pixel level for each detector, geometrical parameters of FPA
    Spacecraft Spacecraft dry mass with margin: 1,558 kg. Launch Mass: 2930 kg, fuel mass (990 kg + 382 kg)
    Attitude Control System: pointing accuracy of 0.07 arcsec, pointing stability of 0.0036 arcsec/0.02 sec
    Propulsion system: orbital maneuver engines: 490 N+12×10 N,attitude control thrusters:
    12×(1–50 µN) + 12×20 mN
    Thermal Control System: working temperature: 20±5° and temperature stability of 45 mK
    for payload; working temperature: –15 to +45℃ for other instruments
    Telecommand: X-band, communication rate: 20 Mbit·s–1
    Launcher and operations CZ-3 C: GTO (200 km× 35958 km). Orbital maneuver to Halo orbit at L2. Launch in 2025
    Nominal mission: 5 years. Launch site: Xichang
    下载: 导出CSV
  • [1] CHANG J, AMBROSI G, AN Q, et al. The dark matter particle explorer mission[J]. Astroparticle Physics, 2017, 95: 6-24 doi: 10.1016/j.astropartphys.2017.08.005
    [2] DAMPE Collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017, 552(7683): 63-66 doi: 10.1038/nature24475
    [3] DAMPE Collaboration, AN Q, ASFANDIYAROV E, et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J]. Science Advances, 2019, 5(9): eaax3793 doi: 10.1126/sciadv.aax3793
    [4] ALEMANNO F, AN Q, AZZARELLO P, et al. Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission[J]. Physical Review Letters, 2021, 126(20): 201102 doi: 10.1103/PhysRevLett.126.201102
    [5] DAMPE Collaboration, LIANG Y F. Search for gamma-ray spectral lines with the DArk matter particle explorer[J]. Science Bulletin, 2022, 67(7): 679-684 doi: 10.1016/j.scib.2021.12.015
    [6] ZHANG S N, LI T P, LU F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(4): 249502
    [7] MA X, TAO L, ZHANG S N, et al. Discovery of oscillations above 200 keV in a black hole X-ray binary with insight-HXMT[J]. Nature Astronomy, 2021, 5(1): 94-102 doi: 10.1038/s41550-020-1192-2
    [8] YOU B, TUO Y L, LI C Z, et al. Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070[J]. Nature Communications, 2021, 12(1): 1025 doi: 10.1038/s41467-021-21169-5
    [9] LI C K, LIN L, XIONG S L, et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J]. Nature Astronomy, 2021, 5(4): 378-384 doi: 10.1038/s41550-021-01302-6
    [10] GE M Y, JI L, ZHANG S N, et al. Insight-HXMT firm detection of the highest-energy fundamental cyclotron resonance scattering feature in the spectrum of GRO J1008-57[J]. The Astrophysical Journal Letters, 2020, 899: L19 doi: 10.3847/2041-8213/abac05
    [11] XIAO S, LIU Y Q, PENG W X, et al. On-ground and on-orbit time calibrations of GECAM[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(1): 964-971 doi: 10.1093/mnras/stac085
    [12] FENG H, LI H, LONG X Y, et al. Re-detection and a possible time variation of soft X-ray polarization from the Crab[J]. Nature Astronomy, 2020, 4(5): 511-516 doi: 10.1038/s41550-020-1088-1
    [13] LONG X Y, FENG H, LI H, et al. X-ray polarimetry of the crab nebula with polar light: polarization recovery after the glitch and a secular position angle variation[J]. The Astrophysical Journal Letters, 2021, 912(2): L28 doi: 10.3847/2041-8213/abfb00
    [14] LONG X Y, FENG H, LI H, et al. A significant detection of X-ray polarization in Sco X-1 with PolarLight and constraints on the corona geometry[J]. The Astrophysical Journal Letters, 2022, 924(1): L13 doi: 10.3847/2041-8213/ac4673
    [15] WEN J X, LONG X Y, ZHENG X T, et al. GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era[J]. Experimental Astronomy, 2019, 48(1): 77-95 doi: 10.1007/s10686-019-09636-w
    [16] GAO H Z, YANG D X, WEN J X, et al. On-ground calibrations of the GRID-02 gamma-ray detector[J]. Experimental Astronomy, 2022, 53(1): 103-116 doi: 10.1007/s10686-021-09819-4
    [17] WANG X I, ZHENG X T, XIAO S, et al. GRB 210121 A: a typical fireball burst detected by two small missions[J]. The Astrophysical Journal, 2021, 922(2): 237 doi: 10.3847/1538-4357/ac29bd
    [18] ANGEL J R P. Lobster eyes as X-ray telescopes[J]. Astrophysical Journal, 1979, 233: 364-373 doi: 10.1086/157397
    [19] WEI J, CORDIER B, ANTIER S, et al. The deep and transient universe in the SVOM era: new challenges and opportunities-scientific prospects of the SVOM mission[J]. arXiv: 1610.06892, 2016
    [20] GEHRELS N, RAMIREZ-RUIZ E, FOX D B. Gamma-ray bursts in the Swift era[J]. Annual Review of Astronomy and Astrophysics, 2009, 47: 567-617 doi: 10.1146/annurev.astro.46.060407.145147
    [21] GOLDSTEIN A, VERES P, BURNS E, et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817 A[J]. The Astrophysical Journal Letters, 2017, 848(2): L14 doi: 10.3847/2041-8213/aa8f41
    [22] YUAN W M, ZHANG C, LING Z X, et al. Einstein probe: a lobster-eye telescope for monitoring the X-ray sky[C]//Proceedings of SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Austin: SPIE, 2018: 1069925
    [23] ZHAN H. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the Survey Space Telescope of China manned space program[J]. Chinese Science Bulletin, 2021, 66(11): 1290-1298 doi: 10.1360/TB-2021-0016
    [24] ZHANG S N, ADRIANI O, ALBERGO S, et al. Introduction to the High Energy Cosmic-Radiation Detection (HERD) facility onboard China’s future space station[C]//Proceedings of the 35 th International Cosmic Ray Conference. Busan, Korea: PoS, 2017: 1077
    [25] DONG Y W, ZHANG S N. Overall status of the high energy cosmic radiation detection facility onboard the future China’s space station[C]//Proceedings of the 36 th International Cosmic Ray Conference. Madison, USA: PoS, 2019: 062
    [26] ZHANG S N, KOLE M, BAO T W, et al. Detailed polarization measurements of the prompt emission of five gamma-ray bursts[J]. Nature Astronomy, 2019, 3(3): 258-264 doi: 10.1038/s41550-018-0664-0
    [27] DE ANGELIS N, BURGESS J M, CADOUX F, et al. Development and science perspectives of the POLAR-2 instrument: a large scale GRB polarimeter[C]//Proceedings of the 37 th International Cosmic Ray Conference. Berlin: The International Union of Pure and Applied Physics (IUPAP), 2021
    [28] CUI W, BREGMAN J N, BRUIJN M P, et al. HUBS: a dedicated hot circumgalactic medium explorer[C]//Proceedings of SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray. SPIE, 2020: 114442 S. DOI: 10.1117/12.2560871
    [29] JI L, LOU Z, ZHANG J L, et al. Mapping diffuse emission in Lyman UV band[C]//Proceedings of SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray. SPIE, 2020: 1144407
    [30] ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502
    [31] CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2188): 20190566 doi: 10.1098/rsta.2019.0566
  • 加载中
图(16) / 表(12)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  272
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-29

目录

    /

    返回文章
    返回