留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetospheric Physics in China: 2020–2021

CAO Jinbin YANG Junying

CAO Jinbin, YANG Junying. Magnetospheric Physics in China: 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 628-652 doi: 10.11728/cjss2022.04.yg12
Citation: CAO Jinbin, YANG Junying. Magnetospheric Physics in China: 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 628-652 doi: 10.11728/cjss2022.04.yg12

Magnetospheric Physics in China: 2020–2021

doi: 10.11728/cjss2022.04.yg12
More Information
  • [1] ZHAO M X, LE G M, LI Q, et al. Dependence of great geomagnetic storm (△SYM-H ≤–200 nT) on associated solar wind parameters[J]. Solar Physics, 2021, 296(4): 66 doi: 10.1007/s11207-021-01816-2
    [2] LE G M, LIU G A, ZHAO M X. Dependence of major geomagnetic storm intensity (Dst ≤–100 nt) on associated solar wind parameters[J]. Solar Physics, 2020, 295(8): 108 doi: 10.1007/s11207-020-01675-3
    [3] XUE Z X, YUAN Z G, YU X D. Prompt emergence and disappearance of emic waves driven by the sequentially enhanced solar wind dynamic pressure[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091479 doi: 10.1029/2020gl091479
    [4] PENG Q S, LI H M, TANG R X, et al. Variation of dayside chorus waves associated with solar wind dynamic pressure based on MMS observations[J]. Advances in Space Research, 2020, 65(11): 2551-2558 doi: 10.1016/j.asr.2020.03.006
    [5] SHANG X J, LIU S, CHEN L J, et al. ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029353 doi: 10.1029/2021ja029353
    [6] XIANG Z, LI X L, KAPALI S, et al. Modeling the dynamics of radiation belt electrons with source and loss driven by the solar wind[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA028988 doi: 10.1029/2020ja028988
    [7] MA X H, ZONG Q G, YUE C, et al. Energetic electron enhancement and dropout echoes induced by solar wind dynamic pressure decrease: the effect of phase space density profile[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028863 doi: 10.1029/2020ja028863
    [8] MA X, XIANG Z, NI B B, et al. On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm[J]. Earth and Planetary Physics, 2020, 4(6): 598-610 doi: 10.26464/epp2020060
    [9] SHI Q Q, SHEN X C, TIAN A M, et al. Magnetosphere response to solar wind dynamic pressure change: vortices, ULF waves, and aurorae[M]//ZENG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 77-97
    [10] ZHAO J Y, SHI Q Q, TIAN A M, et al. Vortex generation and auroral response to a solar wind dynamic pressure increase: event analyses[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028753 doi: 10.1029/2020ja028753
    [11] ZOU Z Y, ZUO P B, NI B B, et al. Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event[J]. The Astrophysical Journal Letters, 2020, 895(1): L24 doi: 10.3847/2041-8213/ab9179
    [12] LI H M, PENG Q S, TANG R X, et al. Statistical characteristics of electron pitch angle distributions inside the magnetopause based on MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028291 doi: 10.1029/2020ja028291
    [13] YUE C, BORTNIK J, ZOU S S, et al. Episodic occurrence of field-aligned energetic ions on the dayside[J]. Geophysical Research Letters, 2020, 47(2): e2019GL086384 doi: 10.1029/2019gl086384
    [14] NI B B, YAN L, FU S, et al. Distinct formation and evolution characteristics of outer radiation belt electron butterfly pitch angle distributions observed by Van Allen probes[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086487 doi: 10.1029/2019gl086487
    [15] XIANG Z, LI X L, TEMERIN M A, et al. On energetic electron dynamics during geomagnetic quiet times in Earth’s inner radiation belt due to atmospheric collisional loss and CRAND as a source[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027678 doi: 10.1029/2019ja027678
    [16] CHEN J J, LEI J H, WANG W B, et al. Ionospheric electrodynamic response to solar flares in September 2017[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029745 doi: 10.1029/2021ja029745
    [17] CHENG L B, LE G M, ZHAO M X. Sun-Earth connection event of super geomagnetic storm on 2001 March 31: the importance of solar wind density[J]. Research in Astronomy and Astrophysics, 2020, 20(3): 036 doi: 10.1088/1674-4527/20/3/36
    [18] CAI Y H, WANG W B, ZHANG S R, et al. Climatology analysis of the daytime topside ionospheric diffusive O+ flux based on incoherent scatter radar observations at millstone hill[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029222 doi: 10.1029/2021ja029222
    [19] ZENG C, WANG C, DUAN S P, et al. Statistical study of oxygen ions abundance and spatial distribution in the dayside magnetopause boundary layer: MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027323 doi: 10.1029/2019ja027323
    [20] CHEN A, YUE C, CHEN H F, et al. Ring current decay during geomagnetic storm recovery phase: comparison between RBSP observations and theoretical modeling[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028500 doi: 10.1029/2020ja028500
    [21] HUANG Z, YUAN Z G, YU X D. Evolutions of equatorial ring current ions during a magnetic storm[J]. Earth and Planetary Physics, 2020, 4(2): 131-137 doi: 10.26464/epp2020019
    [22] GU X D, LI G J, PANG H, et al. Statistical analysis of very low frequency atmospheric noise caused by the global lightning using ground-based observations in China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029101 doi: 10.1029/2020ja029101
    [23] GUO M Y, ZHOU Q H, XIAO F L, et al. Upward propagation of lightning-generated whistler waves into the radiation belts[J]. Science China Technological Sciences, 2020, 63(2): 243-248 doi: 10.1007/s11431-018-9486-9
    [24] LI L Y, ZHOU S P, WEI S H, et al. The day-night difference and geomagnetic activity variation of energetic electron fluxes in region of South Atlantic anomaly[J]. Space Weather, 2020, 18(9): e2020SW002479 doi: 10.1029/2020sw002479
    [25] CHEN G, LI Y X, ZHANG S D, et al. Multi-instrument observations of the atmospheric and ionospheric response to the 2013 sudden stratospheric warming over Eastern Asia region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1232-1243 doi: 10.1109/tgrs.2019.2944677
    [26] ZHANG K D, WANG H, YAMAZAKI Y, et al. Effects of subauroral polarization streams on the equatorial electrojet during the geomagnetic storm on June 1, 2013[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029681 doi: 10.1029/2021ja029681
    [27] ZHOU Y J, HE F, ZHANG X X, et al. Statistical characteristics of giant undulations during geomagnetic storms[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093098 doi: 10.1029/2021gl093098
    [28] HE F, GUO R L, DUNN W R, et al. Plasmapause surface wave oscillates the magnetosphere and diffuse aurora[J]. Nature Communications, 2020, 11(1): 1668 doi: 10.1038/s41467-020-15506-3
    [29] WANG Yuyouting, ZHANG Xiaoxin, HE Fei, et al. A statistical analysis of the electron number density fluctuations near the plasmapause based on Van Allen Probes observations[J]. Chinese Journal of Geophysics, 2020, 63(6): 2141-2148 doi: 10.6038/cjg2020O0096
    [30] LI H M, FU T X, TANG R X, et al. Statistical study and corresponding evolution of plasmaspheric plumes under different levels of geomagnetic storms[J]. Annales Geophysicae, 2022, 40(2): 167-177 doi: 10.5194/angeo-40-167-2022
    [31] WANG Y B, KISTLER L M, MOUIKIS C G, et al. Formation of the low-energy “finger” ion spectral structure near the inner edge of the plasma sheet[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089875 doi: 10.1029/2020gl089875
    [32] REN G M, CAO J B, YANG J, et al. The response of plasma parameters and energy transport in the plasma sheet to interplanetary magnetic field Bz[J]. Science China Technological Sciences, 2021, 64(7): 1528-1534 doi: 10.1007/s11431-020-1744-9
    [33] ZONG Q G, YUE C, FU S Y. Shock induced strong substorms and super substorms: preconditions and associated oxygen ion dynamics[J]. Space Science Reviews, 2021, 217(2): 33 doi: 10.1007/s11214-021-00806-x
    [34] DUAN S P, WANG C, LIU W W, et al. Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by themis[J]. Earth and Planetary Physics, 2021, 5(3): 239-250 doi: 10.26464/epp2021031
    [35] FU H B, YUE C, ZONG Q G, et al. Statistical characteristics of substorms with different intensity[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029318 doi: 10.1029/2021ja029318
    [36] TANG B B, LI W Y, WANG C, et al. Secondary magnetic reconnection at Earth’s flank magnetopause[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 740560 doi: 10.3389/fspas.2021.740560
    [37] YU C, ZHANG X X, WANG W B, et al. Longitudinal dependence of ionospheric Poynting flux in the northern hemisphere during quite times[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029717
    [38] ZHOU X Z, ZHANG X, LI J H, et al. On the species dependence of ion escapes across the magnetopause[J]. Geophysical Research Letters, 2021, 48(8): e2021GL093115 doi: 10.1029/2021gl093115
    [39] JANG E J, YUE C, ZONG Q G, et al. The effect of non-storm time substorms on the ring current dynamics[J]. Earth and Planetary Physics, 2021, 5(3): 251-258 doi: 10.26464/epp2021032
    [40] YI J, FU S, NI B B, et al. Global distribution of reversed energy spectra of ring current protons based on van Allen probes observations[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091559 doi: 10.1029/2020gl091559
    [41] WANG L H, ZONG Q G, SHI Q Q, et al. Solar energetic electrons entering the Earth’s cusp/lobe[J]. The Astrophysical Journal, 2021, 910(1): 12 doi: 10.3847/1538-4357/abdb2b
    [42] GUO J, LU S, LU Q M, et al. Three-dimensional global hybrid simulations of high latitude magnetopause reconnection and flux ropes during the northward IMF[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095003 doi: 10.1029/2021gl095003
    [43] XIAO Chao, LIU Wenlong, ZHANG Dianjun, et al. Formation of the high-density cusp[J]. Chinese Journal of Geophysics, 2020, 63(9): 3231-3239 doi: 10.6038/cjg2020N0424
    [44] XIAO C, LIU W L, ZHANG D J, et al. A normalized statistical study of Earth’s cusp region based on nine years of Cluster measurements[J]. Earth and Planetary Physics, 2020, 4(3): 266-273 doi: 10.26464/epp2020031
    [45] XUE Z X, YUAN Z G, YU X D, et al. Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves[J]. Earth and Planetary Physics, 2021, 5(1): 32-41 doi: 10.26464/epp2021008
    [46] YAO J S, ZHAO Y K, YE D F, et al. A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton-proton instability[J]. Plasma Science and Technology, 2021, 23(12): 125301 doi: 10.1088/2058-6272/ac11b0
    [47] QIN P F, GE Y S, DU A M, et al. Coupling between the magnetospheric dipolarization front and the Earth’s ionosphere by ultralow-frequency waves[J]. The Astrophysical Journal Letters, 2020, 895(1): L13 doi: 10.3847/2041-8213/ab8e48
    [48] CHEN Y Q, WU M, ZHANG T L, et al. Statistical characteristics of field-aligned currents in the plasma sheet boundary layer[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028319 doi: 10.1029/2020ja028319
    [49] ZHU Guangzhen, MA Yuduan. Enhancement of field-aligned current during the azimuthal flow in the near-earth magnetotail[J]. Chinese Journal of Space Science, 2020, 40(4): 493-504
    [50] NOWADA M, ZONG Q G, HUBERT B, et al. North-south asymmetric nightside distorted transpolar arcs within a framework of deformed magnetosphere-ionosphere coupling: IMF-By dependence, ionospheric currents, and magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): 2020JA027991 doi: 10.1029/2020ja027991
    [51] MA Y Z, ZHANG Q H, JAYACHANDRAN P T, et al. Statistical study of the relationship between ion upflow and field-aligned current in the topside ionosphere for both hemispheres during geomagnetic disturbed and quiet time[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2019JA027538 doi: 10.1029/2019ja027538
    [52] YUAN H Z, ZHANG H, LU J Y, et al. Flow vortex-associated downward field-aligned current retreating in the near-earth plasma sheet[J]. Earth and Space Science, 2020, 7(2): e2019EA000916 doi: 10.1029/2019ea000916
    [53] YAO S T, SHI Q Q, GUO R L, et al. Kinetic-scale flux rope in the magnetosheath boundary layer[J]. The Astrophysical Journal, 2020, 897(2): 137 doi: 10.3847/1538-4357/ab9620
    [54] PITKÄNEN T, KULLEN A, CAI L, et al. Asymmetry in the Earth’s magnetotail neutral sheet rotation due to IMF By sign?[J]. Geoscience Letters, 2021, 8(1): 3 doi: 10.1186/s40562-020-00171-7
    [55] WANG G Q, ZHANG T L, WU M Y, et al. Field-aligned currents originating from the chaotic motion of electrons in the tilted current sheet: MMS observations[J]. Geophysical Research Letters, 2021, 48(9): e2020GL088841 doi: 10.1029/2020gl088841
    [56] PARK J S, SHI Q Q, NOWADA M, et al. Transpolar arcs during a prolonged radial interplanetary magnetic field interval[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029197 doi: 10.1029/2021ja029197
    [57] TANG T, YANG J, SHI Q Q, et al. The semiannual variation of transpolar arc incidence and its relationship to the Russell-McPherron effect[J]. Earth and Planetary Physics, 2020, 4(6): 619-626 doi: 10.26464/epp2020066
    [58] ZHANG Q H, ZHANG Y L, WANG C, et al. Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16193-16198 doi: 10.1073/pnas.2000614117
    [59] MA Y Z, ZHANG Q H, LYONS L R, et al. Is westward travelling surge driven by the polar cap flow channels?[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028498
    [60] LI K, FÖRSTER M, RONG Z J, et al. The polar wind modulated by the spatial inhomogeneity of the strength of the earth's magnetic field[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027802 doi: 10.1029/2020ja027802
    [61] ZHANG D, ZHANG Q H, MA Y Z, et al. Solar and geomagnetic activity impact on occurrence and spatial size of cold and hot polar cap patches[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094526 doi: 10.1029/2021gl094526
    [62] ZHANG Q H, XING Z Y, WANG Y, et al. Formation and evolution of polar cap ionospheric patches and their associated upflows and scintillations: a review[M]//ZONG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 285-302.
    [63] ZHANG S, LIU S, LI W T, et al. A concise empirical formula for the field-aligned distribution of auroral kilometric radiation based on arase satellite and Van Allen probes[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092805 doi: 10.1029/2021gl092805
    [64] ZHANG S, SHANG X J, HE Y H, et al. Dominant roles of high harmonics on interactions between AKR and radiation belt relativistic electrons[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088421 doi: 10.1029/2020gl088421
    [65] FUJIMOTO K, SYDORA R D. Electromagnetic turbulence in the electron current layer to drive magnetic reconnection[J]. The Astrophysical Journal Letters, 2021, 909(1): L15 doi: 10.3847/2041-8213/abe877
    [66] FUJIMOTO K, CAO J B. Non-adiabatic electron heating in the magnetic islands during magnetic reconnection[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094431 doi: 10.1029/2021gl094431
    [67] HUANG S Y, XIONG Q Y, YUAN Z G, et al. Multi-spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028780 doi: 10.1029/2020ja028780
    [68] ZHOU G, HE H Q. The solar-cycle variations of the anisotropy of Taylor scale and correlation scale in the solar wind turbulence[J]. The Astrophysical Journal Letters, 2021, 911(1): L2 doi: 10.3847/2041-8213/abef00
    [69] ZHOU G, HE H Q, WAN W. Effects of solar activity on Taylor scale and correlation scale in solar wind magnetic fluctuations[J]. The Astrophysical Journal Letters, 2020, 899(2): L32 doi: 10.3847/2041-8213/abaaa9
    [70] YUE C, LIU Y, ZHOU X Z, et al. MLT-dependence of sustained spectral gaps of proton and oxygen in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029935 doi: 10.1029/2021ja029935
    [71] YUE C, ZHOU X Z, BORTNIK J, et al. Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029092 doi: 10.1029/2020ja029092
    [72] ZHAO X X, HAO Y X, ZONG Q G, et al. Origin of electron boomerang stripes: Localized ULF wave-particle interactions[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087960 doi: 10.1029/2020gl087960
    [73] ZHOU X Z, REN J, YANG F, et al. On the formation of wedge-like ion spectral structures in the nightside inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028420 doi: 10.1029/2020ja028420
    [74] REN J, ZONG Q G, YUE C, et al. Simultaneously formed wedge‐like structures of different ion species deep in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028192
    [75] LI S Y, LUO H, KRONBERG E A, et al. Stationary “nose-like” ion spectral structures in the inner magnetosphere: observations by van Allen probes and simulations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 211: 105390 doi: 10.1016/j.jastp.2020.105390
    [76] REN J, ZHOU X Z, ZONG Q G, et al. The link between wedge-like and nose-like ion spectral structures in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093930 doi: 10.1029/2021gl093930
    [77] LIU Yangxizi, XIANG Zheng, GUO Jianguang, et al. Scattering effect of very low frequency transmitter signals on energetic electrons in earth's inner belt and slot region[J]. Acta Physica Sinica, 2021, 70(14): 149401 doi: 10.7498/aps.70.20202029
    [78] XIANG Zheng, LIN Xianhao, CHEN Wei, et al. Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere: a survey using van Allen probes EMFISIS measurements[J]. Chinese Journal of Geophysics, 2021, 64(11): 3860-3869 doi: 10.6038/cjg2021P0131
    [79] HUA M, LI W, NI B B, et al. Very-low-frequency transmitters bifurcate energetic electron belt in near-earth space[J]. Nature Communications, 2020, 11(1): 4847 doi: 10.1038/s41467-020-18545-y
    [80] HUA M, NI B B, LI W, et al. Statistical distribution of bifurcation of Earth’s inner energetic electron belt at tens of keV[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091242 doi: 10.1029/2020gl091242
    [81] GAO Z L, SHANG X J, ZUO P B, et al. Lag-correlated rising tones of electron cyclotron harmonic and whistler-mode upper-band chorus waves[J]. Physics of Plasmas, 2020, 27(6): 062903 doi: 10.1063/5.0008812
    [82] GAO Z L, ZUO P B, FENG X S, et al. Evidence of nonlinear interactions between magnetospheric electron cyclotron harmonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088452 doi: 10.1029/2020gl088452
    [83] WU Y F, TAO X, LIU X, et al. Particle-in-cell simulation of electron cyclotron harmonic waves driven by a loss cone distribution[J]. Geophysical Research Letters, 2020, 47(9): e2020GL087649 doi: 10.1029/2020gl087649
    [84] LOU Y Q, CAO X, NI B B, et al. Diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the dayside magnetosphere[J]. Geophysical Research Letters, 2021, 48(5): e2020GL092208 doi: 10.1029/2020gl092208
    [85] TENG S, WU Y, GUO R, et al. Observation of periodic rising and falling tone ECH waves at saturn[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094559 doi: 10.1029/2021gl094559
    [86] CHEN R, GAO X L, LU Q M, et al. In situ observations of whistler-mode chorus waves guided by density ducts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028814 doi: 10.1029/2020ja028814
    [87] KE Y G, CHEN L J, GAO X L, et al. Whistler-mode waves trapped by density irregularities in the Earth’s magnetosphere[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092305 doi: 10.1029/2020gl092305
    [88] ZHANG H, ZHONG Z H, TANG R X, et al. Modulation of whistler mode waves by ultra-low frequency wave in a macroscale magnetic hole: MMS observations[J]. Geophysical Research Letters, 2021, 48(22): e2021GL096056 doi: 10.1029/2021gl096056
    [89] ZHAO D, FU S Y, PARKS G K, et al. Modulation of whistler mode waves by ion-scale waves observed in the distant magnetotail[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027278 doi: 10.1029/2019ja027278
    [90] CHEN R, GAO X L, LU Q M, et al. Observational evidence for whistler mode waves guided/ducted by the inner and outer edges of the plasmapause[J]. Geophysical Research Letters, 2021, 48(6): e2021GL092652 doi: 10.1029/2021gl092652
    [91] LU Q M, CHEN L J, WANG X Y, et al. Repetitive emissions of rising-tone chorus waves in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094979 doi: 10.1029/2021gl094979
    [92] WU Y F, TAO X, ZONCA F, et al. Controlling the chirping of chorus waves via magnetic field inhomogeneity[J]. Geophysical Research Letters, 2020, 47(10): e2020GL087791 doi: 10.1029/2020gl087791
    [93] KE Y G, LU Q M, GAO X L, et al. Particle-in-cell simulations of characteristics of rising-tone chorus waves in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027961 doi: 10.1029/2020ja027961
    [94] CHEN H Y, GAO X L, LU Q M, et al. Gap formation around 0.5 Ωe of whistler‐mode waves excited by electron temperature anisotropy[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028631
    [95] CHEN H Y, SAUER K, LU Q M, et al. Two-band whistler-mode waves excited by an electron bi-Maxwellian distribution plus parallel beams[J]. AIP Advances, 2020, 10(12): 125010 doi: 10.1063/5.0026220
    [96] TAO X, ZONCA F, CHEN L, et al. Theoretical and numerical studies of chorus waves: a review[J]. Science China Earth Sciences, 2020, 63(1): 78-92 doi: 10.1007/s11430-019-9384-6
    [97] XIE Y, TENG S C, WU Y F, et al. A statistical analysis of duration and frequency chirping rate of falling tone chorus[J]. Geophysical Research Letters, 2021, 48(19): e2021GL095349 doi: 10.1029/2021gl095349
    [98] LIU S, GAO Z L, XIAO F L, et al. Observation of unusual chorus elements by van Allen probes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029258 doi: 10.1029/2021ja029258
    [99] CHENG X W, GU X D, NI B B, et al. Hemispheric distribution of lower-band chorus waves observed by van Allen probes[J]. Chinese Journal of Space Science, 2020, 40(2): 186-196
    [100] TAO X, ZONCA F, CHEN L. A “ trap-release-amplify” model of chorus waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029585 doi: 10.1029/2021ja029585
    [101] LIU Z Y, ZONG Q G, BLAKE J B. On phase space density and its radial gradient of outer radiation belt seed electrons: MMS/FEEPS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2019JA027711 doi: 10.1029/2019ja027711
    [102] CHEN X R, ZONG Q G, ZOU H, et al. Distribution of energetic electrons in the near earth space: new observations from the BeiDa imaging electron spectrometer and the van Allen probes[J]. Planetary and Space Science, 2020, 186: 104919 doi: 10.1016/j.pss.2020.104919
    [103] LIU Z Y, WANG B, ZONG Q G, et al. Thermal electron behavior in obliquely propagating whistler waves: MMS observations in the solar wind[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094099 doi: 10.1029/2021gl094099
    [104] CAI B, WU Y F, TAO X. Effects of nonlinear resonance broadening on interactions between electrons and whistler mode waves[J]. Geophysical Research Letters, 2020, 47(11): e2020GL087991 doi: 10.1029/2020gl087991
    [105] WU H, CHEN T, KALEGAEV V V, et al. Long‐term dropout of relativistic electrons in the outer radiation belt during two sequential geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028098
    [106] SHI X F, REN J, ZONG Q G. The dynamics of the inner boundary of the outer radiation belt during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027309 doi: 10.1029/2019ja027309
    [107] HE J B, JIN Y Y, XIAO F L, et al. The influence of various frequency chorus waves on electron dynamics in radiation belts[J]. Science China Technological Sciences, 2021, 64(4): 890-897 doi: 10.1007/s11431-020-1750-6
    [108] LIU S, XIE Y Q, ZHANG S, et al. Unusual loss of van Allen belt relativistic electrons by extremely low-frequency chorus[J]. Geophysical Research Letters, 2020, 47(18): e2020GL089994 doi: 10.1029/2020gl089994
    [109] KONG Z Y, GAO X L, CHEN H Y, et al. The correlation between whistler mode waves and electron beam-like distribution: test particle simulations and THEMIS observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029834 doi: 10.1029/2021ja029834
    [110] GUO D Y, XIANG Z, NI B B, et al. Bounce resonance scattering of radiation belt energetic electrons by extremely low-frequency chorus waves[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095714 doi: 10.1029/2021gl095714
    [111] MA X, TIAN A M, SHI Q Q, et al. Electron pitch angle distributions in compressional Pc5 waves by THEMIS-A observations[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095730 doi: 10.1029/2021gl095730
    [112] CHEN X R, ZONG Q G, ZOU H, et al. Beida imaging electron spectrometer observation of multi-period electron flux modulation caused by localized ultra-low-frequency waves[J]. Annales Geophysicae, 2020, 38(4): 801-813 doi: 10.5194/angeo-38-801-2020
    [113] HE Z G, YU J, LI K, et al. A comparative study on the distributions of incoherent and coherent plasmaspheric hiss[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092902 doi: 10.1029/2021gl092902
    [114] LIU N G, SU Z P, GAO Z L, et al. Comprehensive observations of substorm-enhanced plasmaspheric hiss generation, propagation, and dissipation[J]. Geophysical Research Letters, 2020, 47(2): e2019GL086040 doi: 10.1029/2019gl086040
    [115] WANG J L, LI L Y, YU J. Statistical relationship between exohiss waves and plasmaspheric hiss[J]. Geophysical Research Letters, 2020, 47(5): e2020GL087023 doi: 10.1029/2020gl087023
    [116] YU J, WANG J, LI L Y, et al. Electron diffusion by coexisting plasmaspheric hiss and chorus waves: multisatellite observations and simulations[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088753 doi: 10.1029/2020gl088753
    [117] ZHANG S, RAE I J, WATT C E J, et al. Determining the global scale size of chorus waves in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029569 doi: 10.1029/2021ja029569
    [118] GU X D, XIA S J, FU S, et al. Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities[J]. The Astrophysical Journal, 2020, 891(2): 127 doi: 10.3847/1538-4357/ab71fc
    [119] FU H B, YUE C, MA Q L, et al. Frequency-dependent responses of plasmaspheric hiss to the impact of an interplanetary shock[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094810 doi: 10.1029/2021gl094810
    [120] LI H M, LI W, MA Q L, et al. Attenuation of plasmaspheric hiss associated with the enhanced magnetospheric electric field[J]. Annales Geophysicae, 2021, 39(3): 461-470 doi: 10.5194/angeo-39-461-2021
    [121] HAO Y X, ZONG Q G, ZHOU X Z, et al. A short-lived three-belt structure for sub-MeV electrons in the van Allen belts: time scale and energy dependence[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028031 doi: 10.1029/2020ja028031
    [122] HE Z G, YAN Q, ZHANG X P, et al. Precipitation loss of radiation belt electrons by two-band plasmaspheric hiss waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028157 doi: 10.1029/2020ja028157
    [123] HE Z G, YU J, CHEN L J, et al. Statistical study on locally generated high-frequency plasmaspheric hiss and its effect on suprathermal electrons: van Allen probes observation and quasi-linear simulation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028526 doi: 10.1029/2020ja028526
    [124] LI L Y, YU J, CAO J B, et al. Competitive influences of different plasma waves on the pitch angle distribution of energetic electrons inside and outside plasmasphere[J]. Geophysical Research Letters, 2022, 49(1): e2021GL096062 doi: 10.1029/2021gl096062
    [125] LI L Y, WANG Z Y, YU J, et al. Complementary and catalytic roles of man-made VLF waves and natural plasma waves in the loss of radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA028879 doi: 10.1029/2020ja028879
    [126] XIANG Z, LI X L, NI B B, et al. Dynamics of energetic electrons in the slot region during geomagnetically quiet times: losses due to wave-particle interactions versus a source from Cosmic Ray Albedo Neutron Decay (CRAND)[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028042 doi: 10.1029/2020ja028042
    [127] MEI Y, GE Y S, DU A M, et al. Energy-dependent boundaries of earth's radiation belt electron slot region[J]. The Astrophysical Journal, 2021, 922(2): 246 doi: 10.3847/1538-4357/ac25ec
    [128] ZHU Q, CAO X, GU X D, et al. Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on van Allen probes observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029057 doi: 10.1029/2020ja029057
    [129] CAO X, NI B B, SUMMERS D, et al. Hot plasma effects on the pitch-angle scattering rates of radiation belt electrons due to plasmaspheric hiss[J]. The Astrophysical Journal, 2020, 896(2): 118 doi: 10.3847/1538-4357/ab9107
    [130] MA X, CAO X, NI B B, et al. Realistic dispersion of plasmaspheric hiss in the inner magnetosphere and its effect on wave-induced electron scattering rates[J]. The Astrophysical Journal, 2021, 916(1): 14 doi: 10.3847/1538-4357/abf4d6
    [131] WANG Z S, SU Z P, LIU N G, et al. Suprathermal electron evolution under the competition between plasmaspheric plume hiss wave heating and collisional cooling[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089649 doi: 10.1029/2020gl089649
    [132] FU S, YI J, NI B B, et al. Combined scattering of radiation belt electrons by low-frequency hiss: cyclotron, landau, and bounce resonances[J]. Geophysical Research Letters, 2020, 47(5): e2020GL086963 doi: 10.1029/2020gl086963
    [133] LI Y X, YUE C, HAO Y X, et al. The characteristics of three-belt structure of sub-MeV electrons in the radiation belts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029385 doi: 10.1029/2021ja029385
    [134] LI L F, TU W C, DAI L, et al. Quantifying event-specific radial diffusion coefficients of radiation belt electrons with the PPMLR-MHD simulation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027634 doi: 10.1029/2019ja027634
    [135] ZHANG D J, LIU W L, LI X L, et al. Relation between shock-related impulse and subsequent ULF wave in the Earth’s magnetosphere[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090027 doi: 10.1029/2020gl090027
    [136] LI L, ZHOU X Z, ZONG Q G, et al. Origin of frequency-doubling and shoulder-like magnetic pulsations in ULF waves[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096532 doi: 10.1029/2021gl096532
    [137] ZHANG Y C, DAI L, RONG Z J, et al. Observation of the large-amplitude and fast-damped plasma sheet flapping triggered by reconnection-induced ballooning instability[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028218 doi: 10.1029/2020ja028218
    [138] LI L, ZHOU X Z, OMURA Y, et al. Drift resonance between particles and compressional toroidal ULF waves in dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA028842 doi: 10.1029/2020ja028842
    [139] HAO Y X, ZHAO X X, ZONG Q G, et al. Simultaneous observations of localized and global drift resonance[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088019 doi: 10.1029/2020gl088019
    [140] LI L, OMURA Y, ZHOU X Z, et al. Roles of magnetospheric convection on nonlinear drift resonance between electrons and ULF waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2020JA027787 doi: 10.1029/2020ja027787
    [141] ZHAO X X, HAO Y X, ZONG Q G, et al. Origin of electron boomerang stripes: statistical study[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093377 doi: 10.1029/2021gl093377
    [142] LIU Z Y, ZONG Q G, ZHOU X Z, et al. Pitch angle structures of ring current ions induced by evolving poloidal ultra-low frequency waves[J]. Geophysical Research Letters, 2020, 47(4): e2020GL087203 doi: 10.1029/2020gl087203
    [143] LI X Y, LIU Z Y, ZONG Q G, et al. Pitch angle phase shift in ring current ions interacting with ultra-low-frequency waves: van Allen probes observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029025 doi: 10.1029/2020ja029025
    [144] CHEN H Y, GAO X L, LU Q M, et al. Statistical evidence for EMIC wave excitation driven by substorm injection and enhanced solar wind pressure in the Earth’s magnetosphere: two different EMIC wave sources[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090275 doi: 10.1029/2020gl090275
    [145] LIU N G, SU Z P, GAO Z L, et al. Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections?[J]. Geophysical Research Letters, 2020, 47(17): e2020GL090296
    [146] XIONG Y, XIE L, FU S Y, et al. Non‐storm erosion of MeV electron outer radiation belt down to L*< 4.0 associated with successive enhancements of solar wind density[J]. Earth and Planetary Physics, 2021, 5(6): 581-591
    [147] GUAN C Y, SHANG X J, XIE Y Q, et al. Generation of simultaneous H+ and He+ band EMIC waves in the nightside radiation belt[J]. Science China Technological Sciences, 2020, 63(11): 2369-2374 doi: 10.1007/s11431-019-1545-6
    [148] ZHU M H, YU Y Q, JORDANOVA V K. Simulating the effects of warm O+ ions on the growth of Electromagnetic Ion Cyclotron (EMIC) waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 224: 105737 doi: 10.1016/j.jastp.2021.105737
    [149] YAO J S, ZHAO Y K, LI Y, et al. A new excitation mechanism of He+ band electromagnetic ion cyclotron wave: hybrid simulation study[J]. Physics of Plasmas, 2021, 28(1): 012903 doi: 10.1063/5.0030265
    [150] YU X D, YUAN Z G, OUYANG Z H. First observations of O2+ band EMIC waves in the terrestrial magnetosphere[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094681
    [151] WANG G, GAO Z L, WU M Y, et al. Trapping and amplification of unguided mode EMIC waves in the radiation belt[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029322 doi: 10.1029/2021ja029322
    [152] CAO X, NI B B, SUMMERS D, et al. Effects of superthermal plasmas on the linear growth of multiband EMIC waves[J]. The Astrophysical Journal, 2020, 899(1): 43 doi: 10.3847/1538-4357/ab9ec4
    [153] YU J, LI L Y, CUI J, et al. Nonlinear interactions between relativistic electrons and EMIC waves in magnetospheric warm plasma environments[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028089 doi: 10.1029/2020ja028089
    [154] LOU Y Q, CAO X, NI B B, et al. Parametric dependence of polarization reversal effects on the particle pitch angle scattering by EMIC waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029966 doi: 10.1029/2021ja029966
    [155] CAO X, NI B B, SUMMERS D, et al. Effects of polarization reversal on the pitch angle scattering of radiation belt electrons and ring current protons by EMIC waves[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089718 doi: 10.1029/2020gl089718
    [156] WANG Jie, YUAN Zhigang, YU Xiongdong, et al. Precipitation of ring current protons caused by wave-particle interactions with satellite conjugated observation[J]. Chinese Journal of Geophysics, 2020, 63(6): 2131-2140 doi: 10.6038/cjg2020N0313
    [157] SHREEDEVI P R, YU Y Q, NI B B, et al. Simulating the ion precipitation from the inner magnetosphere by H-band and He-band electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028553 doi: 10.1029/2020ja028553
    [158] ZHU M H, YU Y Q, TIAN X B, et al. On the ion precipitation due to Field Line Curvature (FLC) and EMIC wave scattering and their subsequent impact on ionospheric electrodynamics[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028812 doi: 10.1029/2020ja028812
    [159] YU Y Q, TIAN X B, JORDANOVA V K. The effects of Field Line Curvature (FLC) scattering on ring current dynamics and isotropic boundary[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA027830 doi: 10.1029/2020ja027830
    [160] ABID A A, LU Q M, GAO X L, et al. Energization of cold ions by electromagnetic ion cyclotron waves: Magnetospheric Multiscale (MMS) observations[J]. Physics of Plasmas, 2021, 28(7): 072901 doi: 10.1063/5.0046764
    [161] YUE C, MA Q L, JUN C W, et al. The modulation of plasma and waves by background electron density irregularities in the inner magnetosphere[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088855 doi: 10.1029/2020gl088855
    [162] TENG S, LIU N, MA Q, et al. Direct observational evidence of the simultaneous excitation of electromagnetic ion cyclotron waves and magnetosonic waves by an anisotropic proton ring distribution[J]. Geophysical Research Letters, 2021, 48(8): e2020GL091850 doi: 10.1029/2020gl091850
    [163] HUANG Z, YUAN Z G, YU X D, et al. Simultaneous generation of EMIC and MS waves during the magnetic dip in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094842 doi: 10.1029/2021gl094842
    [164] YAN L, CAO X, HUA M, et al. Statistics of magnetosonic waves in the slot region observed by van Allen probes[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094015 doi: 10.1029/2021gl094015
    [165] YAO F, YUAN Z G, YU X D, et al. Analytical fast magnetosonic wave model based on observations of van Allen probe[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028527 doi: 10.1029/2020ja028527
    [166] OUYANG Z H, YUAN Z G, YU X D, et al. Narrowband magnetosonic waves near the lower hybrid resonance frequency in the inner magnetosphere: wave properties and excitation conditions[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): 2020JA028158 doi: 10.1029/2020ja028158
    [167] WANG G, WU M Y, WANG G Q, et al. Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere[J]. Annales Geophysicae, 2021, 39(4): 613-625 doi: 10.5194/angeo-39-613-2021
    [168] YU X D, YUAN Z G, OUYANG Z H, et al. Effects of the plasmapause on the radial propagation of fast magnetosonic waves: an analytical approach[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028330 doi: 10.1029/2020ja028330
    [169] HUANG S Y, DENG D, YUAN Z G, et al. First observations of magnetosonic waves with nonlinear harmonics[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA027724 doi: 10.1029/2019ja027724
    [170] ZOU Z Y, GAO Z L, ZUO P B, et al. Evidence of wave-wave coupling between frequency harmonic bands of magnetosonic waves[J]. Physics of Plasmas, 2021, 28(12): 122903 doi: 10.1063/5.0065582
    [171] YU X D, YUAN Z G, YAO F, et al. Radially full reflection of fast magnetosonic waves near the cut-off frequency[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029508 doi: 10.1029/2021ja029508
    [172] SUN J C, LU Q M, WANG X Y, et al. Modulation of magnetosonic waves by background plasma density in a dipole magnetic field: 2-D PIC simulation[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029729 doi: 10.1029/2021ja029729
    [173] YU X D, YUAN Z G, YAO F, et al. Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029759 doi: 10.1029/2021ja029759
    [174] WU Z Y, SU Z P, LIU N G, et al. Off-equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091830 doi: 10.1029/2020gl091830
    [175] OUYANG Z H, YUAN Z G, YU X D, et al. Proton ring evolution and its effect on magnetosonic wave excitation: particle-in-cell simulation and linear theory[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092747 doi: 10.1029/2021gl092747
    [176] ZHOU Q H, JIANG Z, YANG C, et al. Correlated observation on global distributions of magnetosonic waves and proton rings in the radiation belts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028354 doi: 10.1029/2020ja028354
    [177] GU Xudong, HE Ying, NI Binbin, et al. Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop[J]. Chinese Journal of Geophysics, 2020, 63(6): 2121-2130 doi: 10.6038/cjg2020N0384
    [178] YUAN Z G, YAO F, YU X D, et al. Ionospheric signatures of ring current ions scattered by magnetosonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL089032 doi: 10.1029/2020gl089032
    [179] ZHOU R X, FU S, NI B B, et al. Parametric dependence of the formation of electron butterfly pitch angle distribution driven by magnetosonic waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA027967 doi: 10.1029/2020ja027967
    [180] FU S, GE Y S. Acceleration of ring current protons driven by magnetosonic waves: comparisons of test particle simulations with quasilinear calculations[J]. The Astrophysical Journal, 2021, 908(2): 203 doi: 10.3847/1538-4357/abd2b3
    [181] LIU C M, FU H S, LIU Y Y, et al. Kinetics of magnetic hole behind dipolarization front[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093174 doi: 10.1029/2021gl093174
    [182] LIU Y Y, FU H S, ZONG Q G, et al. First topology of electron-scale magnetic hole[J]. Geophysical Research Letters, 2020, 47(18): e2020GL088374 doi: 10.1029/2020gl088374
    [183] YAO S T, YUE Z S, SHI Q Q, et al. Statistical properties of kinetic-scale magnetic holes in terrestrial space[J]. Earth and Planetary Physics, 2021, 5(1): 63-72 doi: 10.26464/epp2021011
    [184] HUANG S Y, XU S B, HE L H, et al. Excitation of whistler waves through the bidirectional field-aligned electron beams with electron temperature anisotropy: MMS observations[J]. Geophysical Research Letters, 2020, 47(14): e2020GL087515 doi: 10.1029/2020gl087515
    [185] YAO S T, SHI Q Q, ZONG Q G, et al. Low-frequency whistler waves modulate electrons and generate higher-frequency whistler waves in the solar wind[J]. The Astrophysical Journal, 2021, 923(2): 216 doi: 10.3847/1538-4357/ac2e97
    [186] WANG M M, YAO S T, SHI Q Q, et al. Propagation properties of foreshock cavitons: cluster observations[J]. Science China Technological Sciences, 2020, 63(1): 173-182 doi: 10.1007/s11431-018-9450-3
    [187] JIANG K, HUANG S Y, FU H S, et al. Observational evidence of magnetic reconnection in the terrestrial foreshock region[J]. The Astrophysical Journal, 2021, 922(1): 56 doi: 10.3847/1538-4357/ac2500
    [188] CAI C L, WEI X H. Multipoint observations of magnetosheath response to foreshock transients[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027416 doi: 10.1029/2019ja027416
    [189] WANG B Y, ZHANG H, LIU Z Y, et al. Energy modulations of magnetospheric ions induced by foreshock transient-driven ultralow-frequency waves[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093913 doi: 10.1029/2021gl093913
    [190] LI X Y, LIU Z Y, ZONG Q G, et al. Off-equatorial minima effects on ULF wave-ion interaction in the dayside outer magnetosphere[J]. Geophysical Research Letters, 2021, 48(18): e2021GL095648 doi: 10.1029/2021gl095648
    [191] LU J Y, ZHANG H X, WANG M, et al. Energy transfer across the magnetopause under radial IMF conditions[J]. The Astrophysical Journal, 2021, 920(1): 52 doi: 10.3847/1538-4357/ac15f4
    [192] WANG M, LU J Y, KABIN K, et al. Influence of the interplanetary magnetic field cone angle on the geometry of bow shocks[J]. The Astronomical Journal, 2020, 159(5): 227 doi: 10.3847/1538-3881/ab86a7
    [193] WANG J, HUANG C, GE Y S, et al. Influence of the IMF Bx on the geometry of the bow shock and magnetopause[J]. Planetary and Space Science, 2020, 182: 104844 doi: 10.1016/j.pss.2020.104844
    [194] SHANG W S, TANG B B, SHI Q Q, et al. Unusual location of the geotail magnetopause near lunar orbit: a case study[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2019JA027401 doi: 10.1029/2019ja027401
    [195] MAN H Y, ZHOU M, ZHONG Z H, et al. Statistics of the intense current structure in the dayside magnetopause boundary layer[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029890 doi: 10.1029/2021ja029890
    [196] LI Hongshuo, LÜ Jianyong, WANG Ming, et al. A statistical study of the relationship between the upstream plasma β and characteristic parameters such as magnetopause thickness and velocity based on satellite observations[J]. Chinese Journal of Geophysics, 2021, 64(9): 3005-3020 doi: 10.6038/cjg2021P0080
    [197] ZENG C, DUAN S P, WANG C, et al. Magnetospheric multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms[J]. Annales Geophysicae, 2020, 38(1): 123-135 doi: 10.5194/angeo-38-123-2020
    [198] ZHU X Q, WANG M M, SHI Q Q, et al. Motion of classic and spontaneous hot flow anomalies observed by cluster[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029418 doi: 10.1029/2021ja029418
    [199] HUANG S Y, WEI Y Y, YUAN Z G, et al. Electron jets in the terrestrial magnetotail: a statistical overview[J]. The Astrophysical Journal, 2020, 896(1): 67 doi: 10.3847/1538-4357/ab8eb0
    [200] LI H, JIANG W C, WANG C, et al. Evolution of the Earth’s magnetosheath turbulence: a statistical study based on MMS observations[J]. The Astrophysical Journal Letters, 2020, 898(2): L43 doi: 10.3847/2041-8213/aba531
    [201] QU B H, LU J Y, WANG M, et al. Formation of the bow shock indentation: MHD simulation results[J]. Earth and Planetary Physics, 2021, 5(3): 259-269 doi: 10.26464/epp2021033
    [202] GUO Z Z, FU H S, CAO J B, et al. Betatron cooling of electrons in martian magnetotail[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093826 doi: 10.1029/2021gl093826
    [203] LI J H, ZHOU X Z, ZONG Q G, et al. On the origin of donut-shaped electron distributions within magnetic cavities[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091613 doi: 10.1029/2020gl091613
    [204] LI J H, YANG F, ZHOU X Z, et al. Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas[J]. Nature Communications, 2020, 11(1): 5616 doi: 10.1038/s41467-020-19442-0
    [205] LIU J, YAO S T, SHI Q Q, et al. Electron energization and energy dissipation in microscale electromagnetic environments[J]. The Astrophysical Journal Letters, 2020, 899(2): L31 doi: 10.3847/2041-8213/abab92
    [206] LI J H, ZHOU X Z, YANG F, et al. Helical magnetic cavities: kinetic model and comparison with MMS observations[J]. Geophysical Research Letters, 2021, 48(6): e2021GL092383 doi: 10.1029/2021gl092383
    [207] GAO C H, TANG B B, LI W Y, et al. Effect of the electric field on the gyrotropic electron distributions[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091437 doi: 10.1029/2020gl091437
    [208] HUANG S Y, ZHANG J, SAHRAOUI F, et al. Observations of magnetic field line curvature and its role in the space plasma turbulence[J]. The Astrophysical Journal Letters, 2020, 898(1): L18 doi: 10.3847/2041-8213/aba263
    [209] HUANG K, LU Q M, LU S, et al. Formation of pancake, rolling pin, and cigar distributions of energetic electrons at the Dipolarization Fronts (DFs) driven by magnetic reconnection: a two-dimensional particle-in-cell simulation[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029939 doi: 10.1029/2021ja029939
    [210] LIU C M, FU H S, LIU Y Y, et al. Electron pitch-angle distribution in Earth’s magnetotail: pancake, cigar, isotropy, butterfly, and rolling-pin[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027777 doi: 10.1029/2020ja027777
    [211] LU Q M, WANG H Y, WANG X Y, et al. Turbulence-driven magnetic reconnection in the magnetosheath downstream of a quasi-parallel shock: a three-dimensional global hybrid simulation[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085661 doi: 10.1029/2019gl085661
    [212] YANG Z W, LIU Y D, MATSUKIYO S, et al. PIC simulations of microinstabilities and waves at near-sun solar wind perpendicular shocks: predictions for parker solar probe and solar orbiter[J]. The Astrophysical Journal Letters, 2020, 900(2): L24 doi: 10.3847/2041-8213/abaf59
    [213] WANG S M, WANG R S, LU Q M, et al. Energy dissipation via magnetic reconnection within the coherent structures of the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028860 doi: 10.1029/2020ja028860
    [214] LU Q M, YANG Z W, WANG H Y, et al. Two-dimensional particle-in-cell simulation of magnetic reconnection in the downstream of a quasi-perpendicular shock[J]. The Astrophysical Journal, 2021, 919(1): 28 doi: 10.3847/1538-4357/ac18c0
    [215] YANG Z W, LIU Y D, JOHLANDER A, et al. Mms direct observations of kinetic-scale shock self-reformation[J]. The Astrophysical Journal Letters, 2020, 901(1): L6 doi: 10.3847/2041-8213/abb3ff
    [216] WANG G Q, ZHANG T L, WU M Y, et al. Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: magnetospheric multiscale observations[J]. Annales Geophysicae, 2020, 38(2): 309-318 doi: 10.5194/angeo-38-309-2020
    [217] YAO S T, HAMRIN M, SHI Q Q, et al. Propagating and dynamic properties of magnetic dips in the dayside magnetosheath: MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA026736 doi: 10.1029/2019ja026736
    [218] YIN Z F, ZHOU X Z, ZONG Q G, et al. Inner magnetospheric magnetic dips and energetic protons trapped therein: multi-spacecraft observations and simulations[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092567 doi: 10.1029/2021gl092567
    [219] WEI Y Y, HUANG S Y, YUAN Z G, et al. Observation of high-frequency electrostatic waves in the dip region ahead of dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029408 doi: 10.1029/2021ja029408
    [220] WEI D, DUNLOP M W, YANG J Y, et al. Intense dB/dt variations driven by near-earth Bursty Bulk Flows (BBFs): a case study[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091781 doi: 10.1029/2020gl091781
    [221] ZHANG L Q, LUI A T Y, BAUMJOHANN W, et al. Anisotropic vorticity within bursty bulk flow turbulence[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028255 doi: 10.1029/2020ja028255
    [222] ZHANG L Q, BAUMJOHANN W, KHOTYAINTSEV Y V, et al. BBF deceleration down-tail of X <-15 RE from MMS observation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA026837 doi: 10.1029/2019ja026837
    [223] ZHANG M, WANG R S, LU Q M, et al. Observation of the tailward electron flows commonly detected at the flow boundary of the earthward ion bursty bulk flows in the magnetotail[J]. The Astrophysical Journal, 2020, 891(2): 175 doi: 10.3847/1538-4357/ab72a8
    [224] ZHANG L Q, WANG C, DAI L, et al. MMS observation on the cross-tail current sheet roll-up at the dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028796 doi: 10.1029/2020ja028796
    [225] WANG Z, FU H S, VAIVADS A, et al. Monitoring the spatio-temporal evolution of a reconnection X-line in space[J]. The Astrophysical Journal Letters, 2020, 899(2): L34 doi: 10.3847/2041-8213/abad2c
    [226] WANG Z W, HU H Q, LU J Y, et al. Observational evidence of transient lobe reconnection triggered by sudden northern enhancement of IMF B z[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029410 doi: 10.1029/2021ja029410
    [227] LI W H, WU L Y, GE Y S, et al. Magnetotail configuration under northward IMF conditions[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028634 doi: 10.1029/2020ja028634
    [228] HUANG K, LU Q M, CHIEN A, et al. Particle-in-cell simulations of asymmetric reconnection driven by laser-powered capacitor coils[J]. Plasma Physics and Controlled Fusion, 2021, 63(1): 015010 doi: 10.1088/1361-6587/abc600
    [229] GUO J, LU S, LU Q M, et al. Structure and coalescence of magnetopause flux ropes and their dependence on IMF clock angle: three-dimensional global hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028670 doi: 10.1029/2020ja028670
    [230] MAN H Y, ZHONG Z H, LI H M. Internal structures of the ion-scale flux rope associated with dayside magnetopause reconnection[J]. Astrophysics and Space Science, 2020, 365(5): 87 doi: 10.1007/s10509-020-03803-8
    [231] ZHONG Z H, ZHOU M, TANG R X, et al. Direct evidence for electron acceleration within ion-scale flux rope[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085141 doi: 10.1029/2019gl085141
    [232] CHEN Z Z, FU H S, WANG Z, et al. First observation of magnetic flux rope inside electron diffusion region[J]. Geophysical Research Letters, 2021, 48(7): e2020GL089722 doi: 10.1029/2020gl089722
    [233] HE R J, FU H S, LIU Y Y, et al. Subion-scale flux rope nested inside ion-scale flux rope in earth's magnetotail[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096169 doi: 10.1029/2021gl096169
    [234] ZHANG C, RONG Z J, SHEN C, et al. Examining the magnetic geometry of magnetic flux ropes from the view of single-point analysis[J]. The Astrophysical Journal, 2020, 903(1): 53 doi: 10.3847/1538-4357/abba16
    [235] MAN H Y, ZHOU M, YI Y Y, et al. Observations of electron-only magnetic reconnection associated with macroscopic magnetic flux ropes[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089659 doi: 10.1029/2020gl089659
    [236] ZHONG Z H, ZHOU M, DENG X H, et al. Three-dimensional electron-scale magnetic reconnection in Earth’s magnetosphere[J]. Geophysical Research Letters, 2021, 48(1): 2020GL090946 doi: 10.1029/2020gl090946
    [237] ZHOU M, MAN H Y, DENG X H, et al. Observations of secondary magnetic reconnection in the turbulent reconnection outflow[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091215 doi: 10.1029/2020gl091215
    [238] WANG S M, WANG R S, LU Q M, et al. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection[J]. Nature Communications, 2020, 11(1): 3964 doi: 10.1038/s41467-020-17803-3
    [239] JIANG K, HUANG S Y, YUAN Z G, et al. Statistical properties of current, energy conversion, and electron acceleration in flux ropes in the terrestrial magnetotail[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093458 doi: 10.1029/2021gl093458
    [240] GUO J, LU S, LU Q M, et al. Re-reconnection processes of magnetopause flux ropes: three-dimensional global hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029388 doi: 10.1029/2021ja029388
    [241] FU H S, GRIGORENKO E E, GABRIELSE C, et al. Magnetotail dipolarization fronts and particle acceleration: a review[J]. Science China Earth Sciences, 2020, 63(2): 235-256 doi: 10.1007/s11430-019-9551-y
    [242] FU H S, ZHAO M J, YU Y, et al. A new theory for energetic electron generation behind dipolarization front[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086790 doi: 10.1029/2019gl086790
    [243] LIU C M, FU H S, YU Y Q, et al. Energy flux densities at dipolarization fronts[J]. Geophysical Research Letters, 2021, 48(16): e2021GL094932 doi: 10.1029/2021gl094932
    [244] MA W Q, ZHOU M, ZHONG Z H, et al. Electron acceleration rate at dipolarization fronts[J]. The Astrophysical Journal, 2020, 903(2): 84 doi: 10.3847/1538-4357/abb8cc
    [245] FU W D, FU H S, CAO J B, et al. Formation of rolling-pin distribution of suprathermal electrons behind dipolarization fronts[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029642 doi: 10.1029/2021ja029642
    [246] MA Y D, YANG J, DUNLOP M W, et al. Energy budget of high-speed plasma flows in the terrestrial magnetotail[J]. The Astrophysical Journal, 2020, 894(1): 16 doi: 10.3847/1538-4357/ab83fd
    [247] JIANG K, HUANG S Y, YUAN Z G, et al. Observations of electron vortex at the dipolarization front[J]. Geophysical Research Letters, 2020, 47(13): e2020GL088448 doi: 10.1029/2020gl088448
    [248] LIU C M, FU H S, LIU Y Y. Electron vorticity at dipolarization fronts[J]. The Astrophysical Journal, 2021, 911(2): 122 doi: 10.3847/1538-4357/abee1c
    [249] SONG L J, ZHOU M, YI Y Y, et al. Force and energy balance of the dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028278 doi: 10.1029/2020ja028278
    [250] WANG L, HUANG C, CAO X, et al. Magnetic energy conversion and transport in the terrestrial magnetotail due to dipolarization fronts[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028568 doi: 10.1029/2020ja028568
    [251] XU Y, FU H S, CAO J B, et al. Electron-scale measurements of antidipolarization front[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092232 doi: 10.1029/2020gl092232
    [252] HUANG C, DU A M, GE Y S. Evolution of electron current layer during anti-parallel magnetic reconnection[J]. Plasma Physics and Controlled Fusion, 2020, 62(5): 055014 doi: 10.1088/1361-6587/ab7d49
    [253] ZHONG Z H, ZHOU M, TANG R X, et al. Extension of the electron diffusion region in a guide field magnetic reconnection at magnetopause[J]. The Astrophysical Journal Letters, 2020, 892(1): L5 doi: 10.3847/2041-8213/ab7b7c
    [254] HUANG K, LU Q M, WANG R S, et al. Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: a theoretical model and particle-in-cell simulations[J]. Chinese Physics B, 2020, 29(7): 075202 doi: 10.1088/1674-1056/ab8da0
    [255] BAI S C, SHI Q Q, LIU T Z, et al. Ion-scale flux rope observed inside a hot flow anomaly[J]. Geophysical Research Letters, 2020, 47(5): e2019GL085933 doi: 10.1029/2019gl085933
    [256] LI Y X, LI W Y, TANG B B, et al. Quantification of cold-ion beams in a magnetic reconnection jet[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 745264 doi: 10.3389/fspas.2021.745264
    [257] WANG S M, WANG R S, LU Q M, et al. Large‐scale parallel electric field colocated in an extended electron diffusion region during the magnetosheath magnetic reconnection[J]. Geophysical Research Letters, 2021, 48(23): e2021GL094879
    [258] ZHOU M, MAN H Y, YANG Y, et al. Measurements of energy dissipation in the electron diffusion region[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096372 doi: 10.1029/2021gl096372
    [259] HUANG H T, YU Y Q, CAO J B, et al. On the ion distributions at the separatrices during symmetric magnetic reconnection[J]. Earth and Planetary Physics, 2021, 5(2): 205-217 doi: 10.26464/epp2021019
    [260] CHEN C X. Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail[J]. Earth and Planetary Physics, 2021, 5(4): 337-347 doi: 10.26464/epp2021035
    [261] WU T, FU S Y, XIE L, et al. Cluster observations on time-of-flight effect of oxygen ions in magnetotail reconnection exhaust region[J]. Geophysical Research Letters, 2020, 47(3): e2019GL085200 doi: 10.1029/2019gl085200
    [262] HUANG K, LIU Y H, LU Q M, et al. Scaling of magnetic reconnection with a limited X-line extent[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088147 doi: 10.1029/2020gl088147
    [263] DAI L, WANG C, LAVRAUD B. Kinetic imprints of ion acceleration in collisionless magnetic reconnection[J]. The Astrophysical Journal, 2021, 919(1): 15 doi: 10.3847/1538-4357/ac0fde
    [264] HUANG S Y, XIONG Q Y, SONG L F, et al. Electron-only reconnection in an ion-scale current sheet at the magnetopause[J]. The Astrophysical Journal, 2021, 922(1): 54 doi: 10.3847/1538-4357/ac2668
    [265] LIU D K, LU S, LU Q M, et al. Spontaneous onset of collisionless magnetic reconnection on an electron scale[J]. The Astrophysical Journal Letters, 2020, 890(2): L15 doi: 10.3847/2041-8213/ab72fe
    [266] LU S, WANG R S, LU Q M, et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver[J]. Nature Communications, 2020, 11(1): 5049 doi: 10.1038/s41467-020-18787-w
    [267] LIU D K, HUANG K, LU Q M, et al. The evolution of collisionless magnetic reconnection from electron scales to ion scales[J]. The Astrophysical Journal, 2021, 922(1): 51 doi: 10.3847/1538-4357/ac2900
    [268] TANG S Y, ZHANG Y C, DAI L, et al. MMS observation of the hall field in an asymmetric magnetic reconnection with guide field[J]. The Astrophysical Journal, 2021, 922(2): 96 doi: 10.3847/1538-4357/ac31b1
    [269] WANG R S, LU Q M, LU S, et al. Physical implication of two types of reconnection electron diffusion regions with and without ion-coupling in the magnetotail current sheet[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088761 doi: 10.1029/2020gl088761
    [270] LI W Y, GRAHAM D B, KHOTYAINTSEV Y V, et al. Electron Bernstein waves driven by electron crescents near the electron diffusion region[J]. Nature Communications, 2020, 11(1): 141 doi: 10.1038/s41467-019-13920-w
    [271] CHEN G, FU H S, ZHANG Y, et al. An unexpected whistler wave generation around dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028957 doi: 10.1029/2020ja028957
    [272] REN Y, DAI L, WANG C, et al. Statistical characteristics in the spectrum of whistler waves near the diffusion region of dayside magnetopause reconnection[J]. Geophysical Research Letters, 2021, 48(1): e2020GL090816 doi: 10.1029/2020gl090816
    [273] YU X C, LU Q M, WANG R S, et al. Simultaneous observation of whistler waves and electron cyclotron harmonic waves in the separatrix region of magnetopause reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029609 doi: 10.1029/2021ja029609
    [274] TANG B B, LI W Y, GRAHAM D B, et al. Lower hybrid waves at the magnetosheath separatrix region[J]. Geophysical Research Letters, 2020, 47(20): e2020GL089880 doi: 10.1029/2020gl089880
    [275] LI W Y, KHOTYAINTSEV Y V, TANG B B, et al. Upper-hybrid waves driven by meandering electrons around magnetic reconnection X line[J]. Geophysical Research Letters, 2021, 48(16): e2021GL093164 doi: 10.1029/2021gl093164
    [276] SHU Y K, LU S, LU Q M, et al. Energy budgets from collisionless magnetic reconnection site to reconnection front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029712 doi: 10.1029/2021ja029712
    [277] YI Y Y, ZHOU M, SONG L J, et al. Energy conversion during multiple X-lines reconnection[J]. Physics of Plasmas, 2020, 27(12): 122905 doi: 10.1063/5.0018269
    [278] CHANG C, HUANG K, LU Q M, et al. Particle-in-cell simulations of electrostatic solitary waves in asymmetric magnetic reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029290 doi: 10.1029/2021ja029290
    [279] FU H S, CHEN F, CHEN Z Z, et al. First measurements of electrons and waves inside an electrostatic solitary wave[J]. Physical Review Letters, 2020, 124(9): 095101 doi: 10.1103/PhysRevLett.124.095101
    [280] GUO Z Z, FU H S, CAO J B, et al. Broadband electrostatic waves behind dipolarization front: observations and analyses[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029900 doi: 10.1029/2021ja029900
    [281] YU Y, FU H S, CAO J B, et al. Electron thermalization and electrostatic turbulence caused by flow reversal in dipolarizing flux tubes[J]. The Astrophysical Journal, 2022, 926(1): 22 doi: 10.3847/1538-4357/ac42c5
    [282] YU X C, LU Q M, WANG R S, et al. Mms observations of broadband electrostatic waves in electron diffusion region of magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028882 doi: 10.1029/2020ja028882
    [283] TANG B B, LI W Y, LE A, et al. Electron mixing and isotropization in the exhaust of asymmetric magnetic reconnection with a guide field[J]. Geophysical Research Letters, 2020, 47(14): e2020GL087159 doi: 10.1029/2020gl087159
    [284] LAI H R, JIA Y D, RUSSELL C T, et al. Magnetic flux circulation in the Saturnian magnetosphere as constrained by Cassini observations in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029304 doi: 10.1029/2021ja029304
    [285] HAO Y X, SUN Y X, ROUSSOS E, et al. The formation of Saturn’s and Jupiter’s electron radiation belts by magnetospheric electric fields[J]. The Astrophysical Journal Letters, 2020, 905(1): L10 doi: 10.3847/2041-8213/abca3f
    [286] SUN Y X, ROUSSOS E, HAO Y X, et al. Saturn’s inner magnetospheric convection in the view of zebra stripe patterns in energetic electron spectra[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029600 doi: 10.1029/2021ja029600
    [287] GUO R L, YAO Z H, DUNN W R, et al. A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft[J]. The Astrophysical Journal Letters, 2021, 919(2): L25 doi: 10.3847/2041-8213/ac26b5
    [288] PAN D X, YAO Z H, GUO R L, et al. A statistical survey of low-frequency magnetic fluctuations at saturn[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028387 doi: 10.1029/2020ja028387
    [289] LONG M Y, GU X D, NI B B, et al. Global distribution of electrostatic electron cyclotron harmonic waves in Saturn’s magnetosphere: a survey of over-13-year Cassini RPWS observations[J]. Journal of Geophysical Research: Planets, 2021, 126(4): e2020JE006800 doi: 10.1029/2020je006800
    [290] ZHANG H, LI Q, TANG R X, et al. Background parameter effects on linear-nonlinear chorus wave growth in the planetary magnetosphere[J]. The Astrophysical Journal, 2020, 904(2): 105 doi: 10.3847/1538-4357/abbeee
    [291] YUAN C J, ROUSSOS E, WEI Y, et al. Sustaining Saturn's electron radiation belts through episodic, global-scale relativistic electron flux enhancements[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027621 doi: 10.1029/2019ja027621
    [292] YUAN C J, ROUSSOS E, WEI Y, et al. Cassini observation of relativistic electron butterfly distributions in Saturn’s inner radiation belts: evidence for acceleration by local processes[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092690 doi: 10.1029/2021gl092690
    [293] XU S B, HUANG S Y, YUAN Z G, et al. Global spatial distribution of dipolarization fronts in the Saturn’s magnetosphere: Cassini observations[J]. Geophysical Research Letters, 2021, 48(17): e2021GL092701 doi: 10.1029/2021gl092701
    [294] XU Y, GUO R L, YAO Z H, et al. Properties of plasmoids observed in Saturn’s dayside and nightside magnetodisc[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096765 doi: 10.1029/2021gl096765
    [295] LIU Z Y, ZONG Q G, BLANC M, et al. Statistics on Jupiter’s current sheet with Juno data: geometry, magnetic fields and energetic particles[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029710 doi: 10.1029/2021ja029710
    [296] ZHANG B Z, DELAMERE P A, YAO Z H, et al. How Jupiter’s unusual magnetospheric topology structures its aurora[J]. Science Advances, 2021, 7(15): eabd1204 doi: 10.1126/sciadv.abd1204
    [297] WANG Y X, GUO X C, WANG C, et al. MHD modeling of the background solar wind in the inner heliosphere from 0.1 to 5.5 AU: comparison with in situ observations[J]. Space Weather, 2020, 18(6): e2019SW002262 doi: 10.1029/2019sw002262
    [298] GUO R L, YAO Z H, GRODENT D, et al. Jupiter’s double-arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and juno[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093964 doi: 10.1029/2021gl093964
    [299] YAO Z H, DUNN W R, WOODFIELD E E, et al. Revealing the source of Jupiter’s x-ray auroral flares[J]. Science Advances, 2021, 7(28): eabf0851 doi: 10.1126/sciadv.abf0851
    [300] YAO Z H, BONFOND B, CLARK G, et al. Reconnection- and dipolarization-driven auroral dawn storms and injections[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2019JA027663 doi: 10.1029/2019ja027663
    [301] WANG Y X, BLANC M, LOUIS C, et al. A preliminary study of magnetosphere-ionosphere-thermosphere coupling at Jupiter: Juno multi-instrument measurements and modeling tools[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029469 doi: 10.1029/2021ja029469
    [302] DUBININ E, FRAENZ M, MODOLO R, et al. Induced magnetic fields and plasma motions in the inner part of the martian magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029542 doi: 10.1029/2021ja029542
    [303] SHAN L C, TSURUTANI B T, OHSAWA Y, et al. Observational evidence for fast mode periodic small-scale shocks: a new type of plasma phenomenon[J]. The Astrophysical Journal Letters, 2020, 905(1): L4 doi: 10.3847/2041-8213/abcb02
    [304] SHAN L C, DU A M, TSURUTANI B T, et al. In situ observations of the formation of periodic collisionless plasma shocks from fast mode waves[J]. The Astrophysical Journal Letters, 2020, 888(2): L17 doi: 10.3847/2041-8213/ab5db3
    [305] WANG M, XIE L, LEE L C, et al. A 3 D parametric martian bow shock model with the effects of Mach number, dynamic pressure, and the interplanetary magnetic field[J]. The Astrophysical Journal, 2020, 903(2): 125 doi: 10.3847/1538-4357/abbc04
    [306] WANG M, LEE L C, XIE L H, et al. Effect of solar wind density and velocity on the subsolar standoff distance of the martian magnetic pileup boundary[J]. Astronomy & Astrophysics, 2021, 651: A22 doi: 10.1051/0004-6361/202140511
    [307] WU M Y, CHEN Y J, DU A M, et al. Statistical properties of small-scale linear magnetic holes in the martian magnetosheath[J]. The Astrophysical Journal, 2021, 916(2): 104 doi: 10.3847/1538-4357/ac090b
    [308] GAO J W, RONG Z J, KLINGER L, et al. A spherical harmonic martian crustal magnetic field model combining data sets of MAVEN and MGS[J]. Earth and Space Science, 2021, 8(10): e2021EA001860 doi: 10.1029/2021ea001860
    [309] DU A M, ZHANG Y, LI H Y, et al. The Chinese mars ROVER fluxgate magnetometers[J]. Space Science Reviews, 2020, 216(8): 135 doi: 10.1007/s11214-020-00766-8
    [310] ZHANG C, RONG Z J, NILSSON H, et al. MAVEN observations of periodic low-altitude plasma clouds at mars[J]. The Astrophysical Journal Letters, 2021, 922(2): L33 doi: 10.3847/2041-8213/ac3a7d
    [311] WANG J, YU J, XU X J, et al. MAVEN observations of magnetic reconnection at martian induced magnetopause[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095426 doi: 10.1029/2021gl095426
    [312] HUANG S Y, LIN R T, YUAN Z G, et al. In situ detection of kinetic-size magnetic holes in the martian magnetosheath[J]. The Astrophysical Journal, 2021, 922(2): 107 doi: 10.3847/1538-4357/ac2737
    [313] ZOU Y L, ZHU Y, BAI Y F, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812-823 doi: 10.1016/j.asr.2020.11.005
    [314] FAN K, FRAENZ M, WEI Y, et al. Deflection of global ion flow by the martian crustal magnetic fields[J]. The Astrophysical Journal Letters, 2020, 898(2): L54 doi: 10.3847/2041-8213/aba519
    [315] DUBININ E, FRAENZ M, PÄTZOLD M, et al. Impact of martian crustal magnetic field on the ion escape[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028010 doi: 10.1029/2020ja028010
    [316] CAO Y T, CUI J, WU X S, et al. A survey of photoelectrons on the nightside of mars[J]. Geophysical Research Letters, 2021, 48(2): e2020GL089998 doi: 10.1029/2020gl089998
    [317] SUN W J, DEWEY R M, AIZAWA S, et al. Review of mercury’s dynamic magnetosphere: post-MESSENGER era and comparative magnetospheres[J]. Science China Earth Sciences, 2022, 65(1): 25-74 doi: 10.1007/s11430-021-9828-0
    [318] ZHONG J, LEE L C, WANG X G, et al. Multiple X-line reconnection observed in mercury’s magnetotail driven by an interplanetary coronal mass ejection[J]. The Astrophysical Journal Letters, 2020, 893(1): L11 doi: 10.3847/2041-8213/ab8380
    [319] JANG E, ZHAO J T, YUE C, et al. Energetic ion dynamics near the cusp region of mercury[J]. The Astrophysical Journal, 2020, 892(1): 10 doi: 10.3847/1538-4357/ab74d1
    [320] ZHANG C, RONG Z J, GAO J W, et al. The flapping motion of mercury’s magnetotail current sheet: MESSENGER observations[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086011 doi: 10.1029/2019gl086011
    [321] ZHAO J T, ZONG Q G, SLAVIN J A, et al. Proton properties in mercury’s magnetotail: a statistical study[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088075 doi: 10.1029/2020gl088075
    [322] ZHONG J, WEI Y, LEE L C, et al. Formation of macroscale flux transfer events at mercury[J]. The Astrophysical Journal Letters, 2020, 893(1): L18 doi: 10.3847/2041-8213/ab8566
    [323] HUANG S Y, WANG Q Y, SAHRAOUI F, et al. Analysis of turbulence properties in the mercury plasma environment using messenger observations[J]. The Astrophysical Journal, 2020, 891(2): 159 doi: 10.3847/1538-4357/ab7349
    [324] XIAO S D, WU M Y, WANG G Q, et al. Survey of 1-Hz waves in the near-Venusian space: venus express observations[J]. Planetary and Space Science, 2020, 187: 104933 doi: 10.1016/j.pss.2020.104933
    [325] XU Q, XU X J, ZHANG T L, et al. The venus express observation of venus’ induced magnetosphere boundary at solar maximum[J]. Astronomy & Astrophysics, 2021, 652: A113 doi: 10.1051/0004-6361/202141391
    [326] XIAO S D, WU M Y, WANG G Q, et al. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock[J]. Earth, Planets and Space, 2021, 73(1): 13 doi: 10.1186/s40623-020-01343-7
    [327] XIAO S D, WU M Y, WANG G Q, et al. Turbulence in the near-Venusian space: venus express observations[J]. Earth and Planetary Physics, 2020, 4(1): 82-87 doi: 10.26464/epp2020012
    [328] XIAO S D, ZHANG T L, VÖRÖS Z, et al. Turbulence near the Venusian bow shock: venus express observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027190 doi: 10.1029/2019ja027190
    [329] GAO J W, RONG Z J, PERSSON M, et al. In situ observations of the ion diffusion region in the Venusian magnetotail[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028547 doi: 10.1029/2020ja028547
    [330] ZHANG H, ZHONG J, ZHANG T X, et al. A meandering lunar wake produced by the pickup of reflected solar-wind ions[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096039 doi: 10.1029/2021gl096039
    [331] ZHANG T X, ZHANG H, LAI H R, et al. Asymmetric lunar magnetic perturbations produced by reflected solar wind particles[J]. The Astrophysical Journal Letters, 2020, 893(2): L36 doi: 10.3847/2041-8213/ab8640
    [332] DUNLOP M W, DONG X C, WANG T Y, et al. Curlometer technique and applications[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029538 doi: 10.1029/2021ja029538
    [333] SHEN C, ZENG G, ZHANG C, et al. Determination of the configurations of boundaries in space[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028163 doi: 10.1029/2020ja028163
    [334] SHEN C, ZHANG C, RONG Z J, et al. Nonlinear magnetic gradients and complete magnetic geometry from multispacecraft measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028846 doi: 10.1029/2020ja028846
    [335] SHEN C, ZHOU Y F, MA Y H, et al. A general algorithm for the linear and quadratic gradients of physical quantities based on 10 or more point measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029121 doi: 10.1029/2021ja029121
    [336] ZHU Y, DU A M, LUO H, et al. The fluxgate magnetometer of the Low Orbit Pearl Satellites (LOPS): overview of in-flight performance and initial results[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10(2): 227-243 doi: 10.5194/gi-10-227-2021
    [337] SHEN C, ZHOU Y F, GAO L, et al. Measurements of the net charge density of space plasmas[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029511 doi: 10.1029/2021ja029511
    [338] LI K, ANDRÉ M, ERIKSSON A, et al. High-latitude cold ion outflow inferred from the cluster wake observations in the magnetotail lobes and the polar cap region[J]. Frontiers in Physics, 2021, 9: 743316 doi: 10.3389/fphy.2021.743316
    [339] HUANG Y, DAI L, WANG C, et al. A new inversion method for reconstruction of plasmaspheric He+ density from EUV images[J]. Earth and Planetary Physics, 2021, 5(2): 218-222 doi: 10.26464/epp2021020
    [340] WANG Z, FU H S, OLSHEVSKY V, et al. Extending the FOTE method to three-dimensional plasma flow fields[J]. The Astrophysical Journal Supplement Series, 2020, 249(1): 10 doi: 10.3847/1538-4365/ab95a0
    [341] FU H S, WANG Z, ZONG Q G, et al. Methods for finding magnetic nulls and reconstructing field topology: a review[M]//ZONG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 153-172.
    [342] TIAN A M, XIAO K, DEGELING A W, et al. Reconstruction of plasma structure with anisotropic pressure: application to Pc5 compressional wave[J]. The Astrophysical Journal, 2020, 889(1): 35 doi: 10.3847/1538-4357/ab6296
    [343] YU X D, YUAN Z G, XUE Z X. Second-harmonic generation of electromagnetic emissions in a magnetized plasma: kinetic theory approach[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091762 doi: 10.1029/2020gl091762
    [344] LI Mu, HE Fei, LIN Ruilin, et al. Prediction of the geomagnetic disturbances in high-latitude region with Weimer model[J]. Chinese Journal of Geophysics, 2020, 63(6): 2159-2169 doi: 10.6038/cjg2020N0379
    [345] ZHANG J J, YU Y Q, WANG C, et al. Measurements and simulations of the geomagnetically induced currents in low-latitude power networks during geomagnetic storms[J]. Space Weather, 2020, 18(8): e2020SW002549 doi: 10.1029/2020sw002549
    [346] XU S B, HUANG S Y, YUAN Z G, et al. Prediction of the dst index with bagging ensemble-learning algorithm[J]. The Astrophysical Journal Supplement Series, 2020, 248(1): 14 doi: 10.3847/1538-4365/ab880e
    [347] YANG X C, WANG L. A study of the performances of widely used external magnetic field models in the outer zone of the Earth’s radiation belts by comparing the field observations from van Allen probe-a and the model estimations[J]. Space Weather, 2021, 19(12): e2021SW002722 doi: 10.1029/2021sw002722
    [348] YU X D, YUAN Z G, YU J. Revisit the analytical approximation of transit-time scattering for fast magnetosonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088434 doi: 10.1029/2020gl088434
    [349] GUO D Y, FU S, XIANG Z, et al. Prediction of dynamic plasmapause location using a neural network[J]. Space Weather, 2021, 19(5): e2020SW002622 doi: 10.1029/2020sw002622
    [350] ZHANG H, FU S Y, XIE L, et al. Relativistic electron flux prediction at geosynchronous orbit based on the neural network and the quantile regression method[J]. Space Weather, 2020, 18(9): e2020SW002445 doi: 10.1029/2020sw002445
    [351] ZOU Z Y, SHPRITS Y Y, NI B B, et al. An artificial neural network model of electron fluxes in the Earth’s central plasma sheet: a THEMIS survey[J]. Astrophysics and Space Science, 2020, 365(6): 100 doi: 10.1007/s10509-020-03819-0
    [352] WANG J Z, ZHU Q, GU X D, et al. An empirical model of the global distribution of plasmaspheric hiss based on van Allen probes EMFISIS measurements[J]. Earth and Planetary Physics, 2020, 4(3): 246-265 doi: 10.26464/epp2020034
    [353] ZHU Jia’nan, GUO Jianguang, NI Binbin, et al. Multi-dimensional data assimilation and analyses of Earth’s outer electron radiation belt[J]. Chinese Journal of Geophysics, 2021, 64(5): 1496-1507
    [354] GUO Y H, WANG C, WEI F, et al. A lunar-based soft X-ray imager (LSXI) for the Earth’s magnetosphere[J]. Science China Earth Sciences, 2021, 64(7): 1026-1035 doi: 10.1007/s11430-020-9792-5
    [355] SUN T R, WANG C, CONNOR H K, et al. Deriving the magnetopause position from the soft X-ray image by using the tangent fitting approach[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028169 doi: 10.1029/2020ja028169
    [356] SUN T R, WANG X, WANG C. Tangent directions of the cusp boundary derived from the simulated soft X-ray image[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028314 doi: 10.1029/2020ja028314
  • 加载中
计量
  • 文章访问数:  293
  • HTML全文浏览量:  127
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回