留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Brief Review of Interplanetary Physics Research Progress in Mainland China during 2020–2022

ZHAO Xinhua HE Jiansen SHEN Chenglong FENG Shiwei JIANG Chaowei LI Huichao QIN Gang LUO Xi

ZHAO Xinhua, HE Jiansen, SHEN Chenglong, FENG Shiwei, JIANG Chaowei, LI Huichao, QIN Gang, LUO Xi. A Brief Review of Interplanetary Physics Research Progress in Mainland China during 2020–2022. Chinese Journal of Space Science, 2022, 42(4): 612-627 doi: 10.11728/cjss2022.04.yg19
Citation: ZHAO Xinhua, HE Jiansen, SHEN Chenglong, FENG Shiwei, JIANG Chaowei, LI Huichao, QIN Gang, LUO Xi. A Brief Review of Interplanetary Physics Research Progress in Mainland China during 2020–2022. Chinese Journal of Space Science, 2022, 42(4): 612-627 doi: 10.11728/cjss2022.04.yg19

A Brief Review of Interplanetary Physics Research Progress in Mainland China during 2020–2022

doi: 10.11728/cjss2022.04.yg19
Funds: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 41000000), National Natural Science Foundation of China (41531073, 41731067, 41861164026, 41874202, 41474153, 42074183 and U1738128), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2016133), and Pandeng Program of National Space Science Center, Chinese Academy of Sciences
More Information
  • [1] LI L P, PETER H, CHITTA L P, et al. Magnetic reconnection between loops accelerated by a nearby filament eruption[J]. The Astrophysical Journal, 2021, 908(2): 213 doi: 10.3847/1538-4357/abd47e
    [2] HOU Z Y, TIAN H, CHEN H C, et al. Formation of solar quiescent coronal loops through magnetic reconnection in an emerging active region[J]. The Astrophysical Journal, 2021, 915(1): 39 doi: 10.3847/1538-4357/abff60
    [3] CHEN H D, ZHANG J, DE PONTIEU B, et al. Coronal mini-jets in an activated solar tornado-like prominence[J]. The Astrophysical Journal, 2020, 899(1): 19 doi: 10.3847/1538-4357/ab9cad
    [4] HOU Z Y, TIAN H, BERGHMANS D, et al. Coronal microjets in quiet-sun regions observed with the extreme ultraviolet imager on board the solar orbiter[J]. The Astrophysical Journal Letters, 2021, 918(1): L20 doi: 10.3847/2041-8213/ac1f30
    [5] CHEN Y J, PRZYBYLSKI D, PETER H, et al. Transient small-scale brightenings in the quiet solar corona: a model for campfires observed with Solar Orbiter[J]. Astronomy & Astrophysics, 2021, 656: L7
    [6] YANG Z H, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369(6504): 694-697 doi: 10.1126/science.abb4462
    [7] YANG Z H, TIAN H, TOMCZYK S, et al. Mapping the magnetic field in the solar corona through magnetoseismology[J]. Science China Technological Sciences, 2020, 63(11): 2357-2368 doi: 10.1007/s11431-020-1706-9
    [8] ZHU R, TAN B L, SU Y N, et al. Microwave diagnostics of magnetic field strengths in solar flaring loops[J]. Science China Technological Sciences, 2021, 64(1): 169-178 doi: 10.1007/s11431-020-1620-7
    [9] CHEN Y J, LI W X, TIAN H, et al. Forward modeling of solar coronal magnetic-field measurements based on a magnetic-field-induced transition in Fe X[J]. The Astrophysical Journal, 2021, 920(2): 116 doi: 10.3847/1538-4357/ac1792
    [10] ZHOU G P, GAO G N, WANG J X, et al. Magnetic reconnection invoked by sweeping of the CME-driven fast-mode shock[J]. The Astrophysical Journal, 2020, 905(2): 150 doi: 10.3847/1538-4357/abc5b2
    [11] ZHOU X P, SHEN Y D, SU J T, et al. CME-driven and flare-ignited fast magnetosonic waves detected in a solar eruption[J]. Solar Physics, 2021, 296(11): 169 doi: 10.1007/s11207-021-01913-2
    [12] ZHOU X P, SHEN Y D, TANG Z H, et al. Total reflection of a flare-driven quasi-periodic extreme ultraviolet wave train at a coronal hole boundary[J]. Astronomy & Astrophysics, 2022, 659: A164
    [13] DUAN Y D, SHEN Y D, ZHOU X P, et al. Homologous accelerated electron beams, a quasiperiodic fast-propagating wave, and a coronal mass ejection observed in one fan-spine jet[J]. The Astrophysical Journal Letters, 2022, 926(2): L39 doi: 10.3847/2041-8213/ac4df2
    [14] HOU Z Y, TIAN H, WANG J S, et al. Three-dimensional propagation of the global extreme-ultraviolet Wave associated with a solar eruption on 2021 October 28[J]. The Astrophysical Journal, 2022, 928(2): 98 doi: 10.3847/1538-4357/ac590d
    [15] ZHANG Q M, DAI J, XU Z, et al. Transverse coronal loop oscillations excited by homologous circular-ribbon flares[J]. Astronomy & Astrophysics, 2020, 638: A32
    [16] ZHANG Q M. Simultaneous transverse oscillations of a coronal loop and a filament excited by a circular-ribbon flare[J]. Astronomy & Astrophysics, 2020, 642: A159
    [17] ZHANG Q M, CHEN J L, LI S T, et al. Transverse coronal-loop oscillations induced by the non-radial eruption of a magnetic flux rope[J]. Solar Physics, 2022, 297(2): 18 doi: 10.1007/s11207-022-01952-3
    [18] XUE J C, SU Y, LI H, et al. Thermodynamical evolution of supra-arcade downflows[J]. The Astrophysical Journal, 2020, 898(1): 88 doi: 10.3847/1538-4357/ab9a3d
    [19] LI Z F, CHENG X, DING M D, et al. Thermodynamic evolution of solar flare supra-arcade downflows[J]. The Astrophysical Journal, 2021, 915(2): 124 doi: 10.3847/1538-4357/ac043e
    [20] SAMANTA T, TIAN H, CHEN B, et al. Plasma heating induced by tadpole-like downflows in the flaring solar corona[J]. The Innovation, 2021, 2(1): 100083 doi: 10.1016/j.xinn.2021.100083
    [21] LI L P, PETER H, CHITTA L P, et al. Relation of coronal rain originating from coronal condensations to interchange magnetic reconnection[J]. The Astrophysical Journal, 2020, 905(1): 26 doi: 10.3847/1538-4357/abc68c
    [22] LI L P, PETER H, CHITTA L P, et al. On-disk solar coronal condensations facilitated by magnetic reconnection between open and closed magnetic structures[J]. The Astrophysical Journal, 2021, 910(2): 82 doi: 10.3847/1538-4357/abe537
    [23] LI L P, PETER H, CHITTA L P, et al. Revisiting the formation mechanism for coronal rain from previous studies[J]. Research in Astronomy and Astrophysics, 2021, 21(10): 255 doi: 10.1088/1674-4527/21/10/255
    [24] LI L P, PETER H, CHITTA L P, et al. Formation of a solar filament by magnetic reconnection and coronal condensation[J]. The Astrophysical Journal Letters, 2021, 919: L21 doi: 10.3847/2041-8213/ac257f
    [25] YANG B, YANG J Y, BI Y, et al. Formation of a solar filament by magnetic reconnection, associated chromospheric evaporation, and subsequent coronal condensation[J]. The Astrophysical Journal Letters, 2021, 921(2): L33 doi: 10.3847/2041-8213/ac31b6
    [26] CHEN H C, TIAN H, LI L P, et al. Coronal condensation as the source of transition-region supersonic downflows above a sunspot[J]. Astronomy & Astrophysics, 2022, 659: A107
    [27] DUAN D, HE J S, WU H H, et al. Magnetic energy transfer and distribution between protons and electrons for alfvénic waves at kinetic scales in wavenumber space[J]. The Astrophysical Journal, 2020, 896(1): 47 doi: 10.3847/1538-4357/ab8ad2
    [28] DUAN D, HE J S, BOWEN T A, et al. Anisotropy of solar wind turbulence in the inner heliosphere at kinetic scales: PSP observations[J]. The Astrophysical Journal Letters, 2021, 915(1): L8 doi: 10.3847/2041-8213/ac07ac
    [29] ZHANG J, HUANG S Y, HE J S, et al. Three-dimensional anisotropy and scaling properties of solar wind turbulence at kinetic scales in the inner heliosphere: Parker solar probe observations[J]. The Astrophysical Journal Letters, 2022, 924(2): L21 doi: 10.3847/2041-8213/ac4027
    [30] HUANG S Y, ZHANG J, SAHRAOUI F, et al. Kinetic scale slow solar wind turbulence in the inner heliosphere: coexistence of kinetic alfvén waves and alfvén ion cyclotron waves[J]. The Astrophysical Journal Letters, 2020, 897(1): L3 doi: 10.3847/2041-8213/ab9abb
    [31] ZHU X Y, HE J S, VERSCHAREN D, et al. Wave composition, propagation, and polarization of magnetohydrodynamic turbulence within 0.3 au as observed by parker solar probe[J]. The Astrophysical Journal Letters, 2020, 901(1): L3 doi: 10.3847/2041-8213/abb23e
    [32] ZHAO G Q, LIN Y, WANG X Y, et al. Two correlations with enhancement near the proton gyroradius scale in solar wind turbulence: parker solar probe (PSP) and wind observations[J]. The Astrophysical Journal, 2022, 924(2): 92 doi: 10.3847/1538-4357/ac3747
    [33] WU H H, TU C Y, WANG X, et al. Energy supply for heating the slow solar wind observed by parker solar probe between 0.17 and 0.7 au[J]. The Astrophysical Journal Letters, 2020, 904(1): L8 doi: 10.3847/2041-8213/abc5b6
    [34] WU H H, TU C Y, HE J S, et al. Consistency of von Karman decay rate with the energy supply rate and heating rate observed by parker solar probe[J]. The Astrophysical Journal, 2022, 926(2): 116 doi: 10.3847/1538-4357/ac4413
    [35] HE J S, ZHU X Y, YANG L P, et al. Solar origin of compressive alfvénic spikes/kinks as observed by parker solar probe[J]. The Astrophysical Journal Letters, 2021, 913(1): L14 doi: 10.3847/2041-8213/abf83d
    [36] WU H H, TU C Y, WANG X, et al. Large amplitude switchback turbulence: possible magnetic velocity alignment structures[J]. The Astrophysical Journal, 2021, 911(2): 73 doi: 10.3847/1538-4357/abec6c
    [37] WU H H, TU C Y, WANG X, et al. Magnetic and velocity fluctuations in the near-sun region from 0.1-0.3 au observed by parker solar probe[J]. The Astrophysical Journal, 2021, 922(2): 92 doi: 10.3847/1538-4357/ac3331
    [38] SHI C, ZHAO J S, HUANG J, et al. Parker solar probe observations of alfvénic waves and ion-cyclotron waves in a small-scale flux rope[J]. The Astrophysical Journal Letters, 2021, 908(1): L19 doi: 10.3847/2041-8213/abdd28
    [39] LIU Y Y, FU H S, CAO J B, et al. Characteristics of interplanetary discontinuities in the inner heliosphere revealed by parker solar probe[J]. The Astrophysical Journal, 2021, 916(2): 65 doi: 10.3847/1538-4357/ac06a1
    [40] YU L, HUANG S Y, YUAN Z G, et al. Characteristics of magnetic holes in the solar wind revealed by parker solar probe[J]. The Astrophysical Journal, 2021, 908(1): 56 doi: 10.3847/1538-4357/abb9a8
    [41] SHI C, ZHAO J S, MALASPINA D M, et al. Multiband electrostatic waves below and above the electron cyclotron frequency in the near-sun solar wind[J]. The Astrophysical Journal Letters, 2022, 926(1): L3 doi: 10.3847/2041-8213/ac4d37
    [42] CHEN L, MA B, WU D J, et al. An interplanetary type IIIb radio burst observed by parker solar probe and its emission mechanism[J]. The Astrophysical Journal Letters, 2021, 915(1): L22 doi: 10.3847/2041-8213/ac0b43
    [43] HUANG S Y, WANG Q Y, SAHRAOUI F, et al. Analysis of turbulence properties in the mercury plasma environment using MESSENGER observations[J]. The Astrophysical Journal, 2020, 891(2): 159 doi: 10.3847/1538-4357/ab7349
    [44] WU H H, TU C Y, WANG X, et al. Energy supply by low-frequency break sweeping for heating the fast solar wind from 0.3 to 4.8 au[J]. The Astrophysical Journal, 2021, 912: 84 doi: 10.3847/1538-4357/abf099
    [45] WU H H, TU C Y, HE J S, et al. The yaglom scaling of the third-order structure functions in the inner heliosphere observed by Helios 1 and 2[J]. The Astrophysical Journal, 2022, 927(1): 113 doi: 10.3847/1538-4357/ac4fcc
    [46] LIU D, RONG Z J, GAO J W, et al. Statistical properties of solar wind upstream of mars: maven observations[J]. The Astrophysical Journal, 2021, 911(2): 113 doi: 10.3847/1538-4357/abed50
    [47] YAO S T, SHI Q Q, ZONG Q G, et al. Low-frequency whistler waves modulate electrons and generate higher-frequency whistler waves in the solar wind[J]. The Astrophysical Journal, 2021, 923(2): 216 doi: 10.3847/1538-4357/ac2e97
    [48] WU H H, TU C Y, WANG X, et al. Isotropic scaling features measured locally in the solar wind turbulence with stationary background field[J]. The Astrophysical Journal, 2020, 892(2): 138 doi: 10.3847/1538-4357/ab7b72
    [49] WANG X, TU C Y, HE J S. Fluctuation amplitudes of magnetic-field directional turnings and magnetic-velocity alignment structures in the solar wind[J]. The Astrophysical Journal, 2020, 903(1): 72 doi: 10.3847/1538-4357/abb883
    [50] ZHAO G Q, FENG H Q, WU D J, et al. Dependence of ion temperatures on alpha–proton differential flow vector and heating mechanisms in the solar wind[J]. The Astrophysical Journal Letters, 2020, 889(1): L14 doi: 10.3847/2041-8213/ab6b29
    [51] ZHAO G Q, LIN Y, WANG X Y, et al. Magnetic helicity signature and its role in regulating magnetic energy spectra and proton temperatures in the solar wind[J]. The Astrophysical Journal, 2021, 906: 123 doi: 10.3847/1538-4357/abca3b
    [52] ZHAO G Q, FENG H Q, WU D J, et al. On mechanisms of proton perpendicular heating in the solar wind: test results based on wind observations[J]. Research in Astronomy and Astrophysics, 2022, 22(1): 015009 doi: 10.1088/1674-4527/ac3413
    [53] HE J S, ZHU X Y, VERSCHAREN D, et al. Spectra of diffusion, dispersion, and dissipation for kinetic alfvénic and compressive turbulence: Comparison between kinetic theory and measurements from mms[J]. The Astrophysical Journal, 2020, 898(1): 43 doi: 10.3847/1538-4357/ab9174
    [54] HOU C P, HE J S, ZHU X Y, et al. Contribution of magnetic reconnection events to energy dissipation in space plasma turbulence[J]. The Astrophysical Journal, 2021, 908(2): 237 doi: 10.3847/1538-4357/abd6f3
    [55] LUO Q W, HE J S, CUI J, et al. Energy conversion between ions and electrons through ion cyclotron waves and embedded ion-scale rotational discontinuity in collisionless space plasmas[J]. The Astrophysical Journal Letters, 2020, 904(2): L16 doi: 10.3847/2041-8213/abc75a
    [56] WANG T Y, HE J S, ALEXANDROVA O, et al. Observational quantification of three-dimensional anisotropies and scalings of space plasma turbulence at kinetic scales[J]. The Astrophysical Journal, 2020, 898(1): 91 doi: 10.3847/1538-4357/ab99ca
    [57] ZHU X Y, HE J S, WANG Y, et al. Difference of intermittency between electric field and magnetic field fluctuations from ion scale down to sub-electron scale in the magnetosheath turbulence[J]. The Astrophysical Journal, 2020, 893(2): 124 doi: 10.3847/1538-4357/ab7815
    [58] YANG Z W, LIU Y D, MATSUKIYO S, et al. PIC simulations of microinstabilities and waves at near-sun solar wind perpendicular shocks: predictions for parker solar probe and solar orbiter[J]. The Astrophysical Journal Letters, 2020, 900(2): L24 doi: 10.3847/2041-8213/abaf59
    [59] LIU Y C M, QI Z H, HUANG J, et al. Unusually low density regions in the compressed slow wind: solar wind transients of small coronal hole origin[J]. Astronomy & Astrophysics, 2020, 635: A49
    [60] CHEN C, LIU Y D, HU H D. Macro magnetic holes caused by ripples in Heliospheric current sheet from coordinated imaging and parker solar probe observations[J]. The Astrophysical Journal, 2021, 921(1): 15 doi: 10.3847/1538-4357/ac1b2b
    [61] LIU Y D, CHEN C, STEVENS M L, et al. Determination of solar wind angular momentum and Alfvén radius from Parker Solar Probe observations[J]. The Astrophysical Journal Letters, 2021, 908(2): L41 doi: 10.3847/2041-8213/abe38e
    [62] QI Z H, LIU Y, LIU R Y. The small coronal hole solar wind and Alfvén wave within the slow solar wind[J]. Chinese Journal of Geophysics, 2021, 64(11): 3837-3845
    [63] LIU R Y, LIU Y C M, HUANG J, et al. Density compressions at magnetic switchbacks associated with fast plasma: a superposed epoch analysis[J]. Journal of Geophysical Research: Space Physics, 2022, 127(5): e2022JA030382
    [64] MENG M M, LIU Y D, CHEN C, et al. Analysis of the distribution, rotation and scale characteristics of solar wind switchbacks: comparison between the first and second encounters of parker solar probe[J]. Research in Astronomy and Astrophysics, 2022, 22(3): 035018 doi: 10.1088/1674-4527/ac49e4
    [65] LI X L, WANG Y M, LIU R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white light: Solar wind transients in 3-D[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027513 doi: 10.1029/2019JA027513
    [66] LYU S Y, WANG Y M, LI X L, et al. Three-dimensional reconstruction of coronal mass ejections by the correlation-aided reconstruction technique through different stereoscopic angles of the solar terrestrial relations observatory twin spacecraft[J]. The Astrophysical Journal, 2021, 909(2): 182 doi: 10.3847/1538-4357/abd9c9
    [67] LI X L, WANG Y M, GUO J N, et al. Radial velocity map of solar wind transients in the field of view of STEREO/HI1 on 3 and 4 April 2010[J]. Astronomy & Astrophysics, 2021, 649: A58
    [68] SHEN C L, CHI Y T, XU M J, et al. Origin of extremely intense southward component of magnetic field (Bs) in ICMEs[J]. Frontiers in Physics, 2021, 9: 762488 doi: 10.3389/fphy.2021.762488
    [69] LIU Y D, CHEN C, ZHAO X W. Characteristics and importance of “ICME-in-sheath” phenomenon and upper limit for geomagnetic storm activity[J]. The Astrophysical Journal Letters, 2020, 897(1): L11 doi: 10.3847/2041-8213/ab9d25
    [70] SONG H Q, ZHANG J, CHENG X, et al. Do all interplanetary coronal mass ejections have a magnetic flux rope structure near 1 AU[J]. The Astrophysical Journal Letters, 2020, 901(2): L21 doi: 10.3847/2041-8213/abb6ec
    [71] ZHAO Y, FENG H Q, LIU Q, et al. The flux of flux ropes embedded within magnetic clouds near 5 AU[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028594 doi: 10.1029/2020JA028594
    [72] SONG H Q, LI L P, SUN Y Y, et al. Solar cycle dependence of ICME composition[J]. Solar Physics, 2021, 296(7): 111 doi: 10.1007/s11207-021-01852-y
    [73] HUANG J, LIU Y, FENG H Q, et al. A statistical study of the plasma and composition distribution inside magnetic clouds: 1998-2011[J]. The Astrophysical Journal, 2020, 893(2): 136 doi: 10.3847/1538-4357/ab7a28
    [74] SONG H Q, CHENG X, LI L P, et al. Comparison of helium abundance between ICMEs and solar wind near 1 AU[J]. The Astrophysical Journal, 2022, 925(2): 137 doi: 10.3847/1538-4357/ac3bbf
    [75] WANG C, XU M J, SHEN C L, et al. Interplanetary shock candidates observed at Venus’s orbit[J]. The Astrophysical Journal, 2021, 912(2): 85 doi: 10.3847/1538-4357/abee7b
    [76] ZHAO D, GUO J P, HUANG H, et al. Interplanetary coronal mass ejections from MAVEN orbital observations at mars[J]. The Astrophysical Journal, 2021, 923(1): 4 doi: 10.3847/1538-4357/ac294b
    [77] HUANG H, GUO J P, MAZELLE C, et al. Properties of interplanetary fast shocks close to the Martian environment[J]. The Astrophysical Journal, 2021, 914(1): 14 doi: 10.3847/1538-4357/abf82b
    [78] CHI Y T, SCOTT C, SHEN C L, et al. Using the “ghost front” to predict the arrival time and speed of CMEs at Venus and Earth[J]. The Astrophysical Journal, 2020, 899(2): 143 doi: 10.3847/1538-4357/aba95a
    [79] XU M J, SHEN C L, WANG C, et al. Multipoint analysis of the interaction between a shock and an ICME-like structure around 2011 March 22[J]. The Astrophysical Journal Letters, 2022, 930(1): L11 doi: 10.3847/2041-8213/ac6879
    [80] XU M J, SHEN C L, HU Q, et al. Whether small flux ropes and magnetic clouds have the same origin: a statistical study of small flux ropes in different types of solar wind[J]. The Astrophysical Journal, 2020, 904(2): 122 doi: 10.3847/1538-4357/abbe21
    [81] FENG H Q, ZHAO Y, WANG J M, et al. Observations of magnetic flux ropes opened or disconnected from the Sun by magnetic reconnection in interplanetary space[J]. Frontiers in Physics, 2021, 9: 679780 doi: 10.3389/fphy.2021.679780
    [82] NING H, CHEN Y, NI S L, et al. Harmonic maser emissions from electrons with loss-cone distribution in solar active regions[J]. The Astrophysical Journal Letters, 2021, 920: L40 doi: 10.3847/2041-8213/ac2cc6
    [83] NING H, CHEN Y, NI S L, et al. Harmonic electron-cyclotron maser emissions driven by energetic electrons of the horseshoe distribution with application to solar radio spikes[J]. Astronomy & Astrophysics, 2021, 651: A118
    [84] LI C Y, CHEN Y, NI S L, et al. PIC simulation of double plasma resonance and zebra pattern of solar radio bursts[J]. The Astrophysical Journal Letters, 2021, 909(1): L5 doi: 10.3847/2041-8213/abe708
    [85] NI S L, CHEN Y, LI C Y, et al. Plasma emission induced by electron cyclotron maser instability in solar plasmas with a large ratio of plasma frequency to gyrofrequency[J]. The Astrophysical Journal Letters, 2020, 891(1): L25 doi: 10.3847/2041-8213/ab7750
    [86] LI T M, LI C, CHEN P F, et al. Particle-in-cell simulation of plasma emission in solar radio bursts[J]. Astronomy & Astrophysics, 2021, 653: A169
    [87] FENG Shiwei, LÜ Maoshui. Recent observational studies on the fine structures of solar type II radio bursts[J]. Progress in Astronomy, 2021, 39(2): 129-143
    [88] FENG Shiwei, ZHAO Fei. Observational study on the fine structures of solar type III radio bursts[J]. Scientia Sinica Technologica, 2021, 51(1): 35-45 doi: 10.1360/SST-2020-0066
    [89] GAO G N, CAI Q W, GUO S J, et al. Decimetric type-U solar radio bursts and associated EUV phenomena on 2011 February 9[J]. The Astrophysical Journal, 2021, 923(2): 286
    [90] WAN J L, TANG J F, TAN B L, et al. Statistical analysis of solar radio fiber bursts and relations with flares[J]. Astronomy & Astrophysics, 2021, 653: A38
    [91] TANG J F, WU D J, WAN J L, et al. Evolvement of microwave spike bursts in a solar flare on 2006 December 13[J]. Research in Astronomy and Astrophysics, 2021, 21(6): 148 doi: 10.1088/1674-4527/21/6/148
    [92] ZHANG M H, ZHANG Y, YAN Y H, et al. Observational results of MUSER during 2014-2019[J]. Research in Astronomy and Astrophysics, 2021, 21(11): 284 doi: 10.1088/1674-4527/21/11/284
    [93] LU L, LI D, NING Z J, et al. Quasi-periodic pulsations detected in Ly α and nonthermal emissions during solar flares[J]. Solar Physics, 2021, 296(8): 130 doi: 10.1007/s11207-021-01876-4
    [94] HONG Z X, LI D, ZHANG M H, et al. Multi-wavelength observations of quasi-periodic pulsations in a solar flare[J]. Solar Physics, 2021, 296(11): 171 doi: 10.1007/s11207-021-01922-1
    [95] LÜ M S, CHEN Y, VASANTH V, et al. An observational revisit of stationary type IV solar radio bursts[J]. Solar Physics, 2021, 296(2): 38 doi: 10.1007/s11207-021-01769-6
    [96] ZHANG P J, WANG C B, KONTAR E P. Parametric simulation studies on the wave propagation of solar radio emission: the source size, duration, and position[J]. The Astrophysical Journal, 2021, 909(2): 195 doi: 10.3847/1538-4357/abd8c5
    [97] JIANG C W, FENG X S, LIU R, et al. A fundamental mechanism of solar eruption initiation[J]. Nature Astronomy, 2021, 5(11): 1126-1138 doi: 10.1038/s41550-021-01414-z
    [98] BIAN X K, JIANG C W, FENG X S, et al. Numerical simulation of a fundamental mechanism of solar eruption with a range of magnetic flux distributions[J]. Astronomy & Astrophysics, 2022, 658: A174
    [99] BIAN X K, JIANG C W, FENG X S, et al. Homologous coronal mass ejections caused by recurring formation and disruption of current sheet within a sheared magnetic arcade[J]. The Astrophysical Journal Letters, 2022, 925(1): L7 doi: 10.3847/2041-8213/ac4980
    [100] JIANG C W, CHEN J, DUAN A Y, et al. Formation of magnetic flux rope during solar eruption. I. Evolution of toroidal flux and reconnection flux[J]. Frontiers in Physics, 2021, 9: 575 doi: 10.3389/fphy.2021.746576
    [101] XING C, CHENG X, DING M D. Evolution of the toroidal flux of CME flux ropes during eruption[J]. The Innovation, 2020, 1(3): 100059 doi: 10.1016/j.xinn.2020.100059
    [102] WANG J T, JIANG C W, YUAN D, et al. The causes of peripheral coronal loop contraction and disappearance revealed in a magnetohydrodynamic simulation of solar eruption[J]. The Astrophysical Journal, 2021, 911(1): 2 doi: 10.3847/1538-4357/abe637
    [103] HUDSON H S. Global properties of solar flares[J]. Space Science Reviews, 2011, 158(1): 5-41 doi: 10.1007/s11214-010-9721-4
    [104] ZHOU Z J, JIANG C W, LIU R, et al. The rotation of magnetic flux ropes formed during solar eruption[J]. The Astrophysical Journal Letters, 2022, 927(1): L14 doi: 10.3847/2041-8213/ac5740
    [105] YE J, SHEN C, LIN J, et al. An efficient parallel semi-implicit solver for anisotropic thermal conduction in the solar corona[J]. Astronomy and Computing, 2020, 30: 100341 doi: 10.1016/j.ascom.2019.100341
    [106] YE J, CAI Q W, SHEN C C, et al. The role of turbulence for heating plasmas in eruptive solar flares[J]. The Astrophysical Journal, 2020, 897(1): 64 doi: 10.3847/1538-4357/ab93b5
    [107] YE J, CAI Q W, SHEN C C, et al. Coronal wave trains and plasma heating triggered by turbulence in the wake of a CME[J]. The Astrophysical Journal, 2021, 909(1): 45 doi: 10.3847/1538-4357/abdeb5
    [108] XIE X Y, MEI Z X, SHEN C C, et al. Numerical experiments on dynamic evolution of a CME-flare current sheet[J]. Monthly Notices of the Royal Astronomical Society, 2022, 509(1): 406-420
    [109] MEI Z X, KEPPENS R, CAI Q W, et al. The triple-layered leading edge of solar coronal mass ejections[J]. The Astrophysical Journal Letters, 2020, 898(1): L21 doi: 10.3847/2041-8213/aba2ce
    [110] MEI Z X, KEPPENS R, CAI Q W, et al. 3 D numerical experiment for EUV waves caused by flux rope eruption[J]. Monthly Notices of the Royal Astronomical Society, 2020, 493(4): 4816-4829 doi: 10.1093/mnras/staa555
    [111] MEI Z X, CAI Q W, YE J, et al. Velocity distribution associated with EUV disturbances caused by eruptive MFR[J]. Frontiers in Astronomy and Space Science, 2021, 8: 771882 doi: 10.3389/fspas.2021.771882
    [112] JIANG C W, BIAN X K, SUN T T, et al. MHD modeling of solar coronal magnetic evolution driven by photospheric flow[J]. Frontiers in Physics, 2021, 9: 646750 doi: 10.3389/fphy.2021.646750
    [113] JIANG C W, TORIUMI S. Testing a data-driven active region evolution model with boundary data at different heights from a solar magnetic flux emergence simulation[J]. The Astrophysical Journal, 2020, 903(1): 11 doi: 10.3847/1538-4357/abb5ac
    [114] TORIUMI S, TAKASAO S, CHEUNG M C M, et al. Comparative study of data-driven solar coronal field models using a flux emergence simulation as a ground-truth data set[J]. The Astrophysical Journal, 2020, 890(2): 103 doi: 10.3847/1538-4357/ab6b1f
    [115] HE W, JIANG C W, ZOU P, et al. Data-driven MHD simulation of the formation and initiation of a large-scale preflare magnetic flux rope in AR 12371[J]. The Astrophysical Journal, 2020, 892(1): 9 doi: 10.3847/1538-4357/ab75ab
    [116] ZHONG Z, GUO Y, DING M D. The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions[J]. Nature Communications, 2021, 12(1): 2734 doi: 10.1038/s41467-021-23037-8
    [117] GUO Y, ZHONG Z, DING M D, et al. Data-constrained magnetohydrodynamic simulation of a long-duration eruptive flare[J]. The Astrophysical Journal, 2021, 919(1): 39 doi: 10.3847/1538-4357/ac10c8
    [118] YAN X L, XUE Z K, JIANG C W, et al. Fast plasmoid-mediated reconnection in a solar flare[J]. Nature Communication 2022, 13: 640
    [119] FENG X S, WANG H P, XIANG C Q, et al. Magnetohydrodynamic modeling of the solar corona with an effective implicit strategy[J]. The Astrophysical Journal Supplement Series, 2021, 257(2): 34 doi: 10.3847/1538-4365/ac1f8b
    [120] LI C X, FENG X S, LI H C, et al. Modified path-conservative HLLEM scheme for magnetohydrodynamic solar wind simulations[J]. The Astrophysical Journal Supplement Series, 2021, 253(1): 24 doi: 10.3847/1538-4365/abd5ab
    [121] LI C X, FENG X S, WEI F S. An entropy-stable ideal EC-GLM-MHD model for the simulation of the three-dimensional ambient solar wind[J]. The Astrophysical Journal Supplement Series, 2021, 257(2): 24 doi: 10.3847/1538-4365/ac16d5
    [122] LIU C, SHEN F, LIU Y S, et al. Numerical study of divergence cleaning and coronal heating/acceleration methods in the 3 D COIN-TVD MHD model[J]. Frontiers in Physics, 2021, 9: 705744 doi: 10.3389/fphy.2021.705744
    [123] LI H C, FENG X S, WEI F S. Comparison of synoptic maps and PFSS solutions for the declining phase of solar cycle 24[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028870
    [124] YANG Y, SHEN F. Three-dimensional MHD modeling of interplanetary solar wind using self-consistent boundary condition obtained from multiple observations and machine learning[J]. Universe, 2021, 7(10): 371 doi: 10.3390/universe7100371
    [125] LI H C, FENG X S, WEI F S. Assessment of CESE-HLLD ambient solar wind model results using multipoint observation[J]. Journal of Space Weather and Space Climate, 2020, 10: 44 doi: 10.1051/swsc/2020048
    [126] LI H C, FENG X S, ZUO P B, et al. Simulation of the interplanetary Bz using a data-driven heliospheric solar wind model[J]. The Astrophysical Journal, 2020, 900(1): 76 doi: 10.3847/1538-4357/aba61f
    [127] SHEN F, LIU Y S, YANG Y. Numerical research on the effect of the initial parameters of a CME flux-rope model on simulation results. II. Different locations of observers[J]. The Astrophysical Journal, 2021, 915(1): 30 doi: 10.3847/1538-4357/ac004e
    [128] SHEN F, LIU Y S, YANG Y. Numerical research on the effect of the initial parameters of a CME flux-rope model on simulation results[J]. The Astrophysical Journal Supplement Series, 2021, 253(1): 12 doi: 10.3847/1538-4365/abd4d2
    [129] ZHANG M, FENG X S, SHEN F, et al. Numerical study of two injection methods for the 2007 November 15 coronal mass ejection in the inner heliosphere[J]. The Astrophysical Journal, 2021, 918(1): 35 doi: 10.3847/1538-4357/ac0b3f
    [130] YANG L P, WANG H P, FENG X S, et al. Numerical MHD simulations of the 3 D morphology and kinematics of the 2017 September 10 CME-driven shock from the sun to earth[J]. The Astrophysical Journal, 2021, 918(1): 31 doi: 10.3847/1538-4357/ac0ef7
    [131] LIU Z X, WANG L H, WIMMER-SCHWEINGRUBER R F, et al. Pan-spectrum fitting formula for suprathermal particles[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028702 doi: 10.1029/2020JA028702
    [132] WANG W, WANG L H, KRUCKER S, et al. Solar energetic electron events associated with hard X-ray flares[J]. The Astrophysical Journal, 2021, 913(2): 89 doi: 10.3847/1538-4357/abefce
    [133] WANG L H, ZONG Q G, SHI Q Q, et al. Solar energetic electrons entering the Earth’s cusp/lobe[J]. The Astrophysical Journal, 2021, 910(1): 12 doi: 10.3847/1538-4357/abdb2b
    [134] KONG F J, QIN G. Suprathermal electron acceleration by a quasi-perpendicular shock: Simulations and observations[J]. The Astrophysical Journal, 2020, 896(1): 20 doi: 10.3847/1538-4357/ab8e32
    [135] WANG Y, LYU D, XIAO B X, et al. Statistical survey of reservoir phenomenon in energetic proton events observed by multiple spacecraft[J]. The Astrophysical Journal, 2021, 909(2): 110 doi: 10.3847/1538-4357/abda39
    [136] WANG Y, LYU D, QIN G, et al. The effects of magnetic boundary on the uniform distribution of energetic particle intensities observed by multiple spacecraft[J]. The Astrophysical Journal, 2021, 913(1): 66 doi: 10.3847/1538-4357/abf9a4
    [137] WU S S, QIN G. Magnetic cloud and sheath in the ground-level enhancement event of 2000 July 14. I. Effects on the solar energetic particles[J]. The Astrophysical Journal, 2020, 904(2): 151 doi: 10.3847/1538-4357/abc0f2
    [138] QIN G, WU S S. Magnetic cloud and sheath in the ground-level enhancement event of 2000 July 14. II. Effects on the forbush decrease[J]. The Astrophysical Journal, 2021, 908(2): 236 doi: 10.3847/1538-4357/abd77c
    [139] WANG J F, QIN G. The invariance of the diffusion coefficient with iterative operations of the charged particle transport equation[J]. The Astrophysical Journal, 2020, 899(1): 39 doi: 10.3847/1538-4357/aba3c8
    [140] WANG J F, QIN G. Study of momentum diffusion with the effect of adiabatic focusing[J]. The Astrophysical Journal Supplement Series, 2021, 257: 44 doi: 10.3847/1538-4365/ac1bb3
    [141] LUO X, ZHANG M, FENG X S, et al. A numerical study of the effects of corotating interaction regions on cosmic-ray transport[J]. The Astrophysical Journal, 2020, 899(2): 90 doi: 10.3847/1538-4357/aba7b5
    [142] SONG X J, LUO X, POTGIETER M S, et al. A numerical study of the solar modulation of galactic protons and helium from 2006 to 2017[J]. The Astrophysical Journal Supplement Series, 2021, 257(2): 48 doi: 10.3847/1538-4365/ac281c
    [143] SHEN Z N, QIN G, ZUO P B, et al. A study of variations of galactic cosmic-ray intensity based on a hybrid data-processing method[J]. The Astrophysical Journal, 2020, 900(2): 143 doi: 10.3847/1538-4357/abac60
    [144] SHEN Z N, QIN G, ZUO P B, et al. Numerical modeling of latitudinal gradients for galactic cosmic-ray protons during solar minima: comparing with Ulysses observations[J]. The Astrophysical Journal Supplement Series, 2021, 256(1): 18 doi: 10.3847/1538-4365/ac0a78
    [145] SHEN Z N, YANG H, ZUO P B, et al. Solar modulation of galactic cosmic-ray protons based on a modified force-field approach[J]. The Astrophysical Journal, 2021, 921(2): 109 doi: 10.3847/1538-4357/ac1fe8
    [146] ZHU B, LIU Y D, KWON R Y, et al. Shock properties and associated characteristics of solar energetic particles in the 2017 September 10 ground-level enhancement event[J]. The Astrophysical Journal, 2021, 921(1): 26 doi: 10.3847/1538-4357/ac106b
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  20
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2022-07-14

目录

    /

    返回文章
    返回