留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in the Researches of the Middle and Upper Atmosphere in China in 2020–2022

CHEN Zeyu XU Jiyao CHEN Hongbin CHEN Wen REN Rongcai HU Xiong ZHU Yajun XUE Xianghui LU Gaopeng ZHANG Shaodong HUANG Kaiming TIAN Wenshou ZHANG Jiankai HU Dingzhu RAO Jian HU Yongyun XIA Yan

CHEN Zeyu, XU Jiyao, CHEN Hongbin, CHEN Wen, REN Rongcai, HU Xiong, ZHU Yajun, XUE Xianghui, LU Gaopeng, ZHANG Shaodong, HUANG Kaiming, TIAN Wenshou, ZHANG Jiankai, HU Dingzhu, RAO Jian, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China in 2020–2022. Chinese Journal of Space Science, 2022, 42(4): 684-711 doi: 10.11728/cjss2022.04.yg20
Citation: CHEN Zeyu, XU Jiyao, CHEN Hongbin, CHEN Wen, REN Rongcai, HU Xiong, ZHU Yajun, XUE Xianghui, LU Gaopeng, ZHANG Shaodong, HUANG Kaiming, TIAN Wenshou, ZHANG Jiankai, HU Dingzhu, RAO Jian, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China in 2020–2022. Chinese Journal of Space Science, 2022, 42(4): 684-711 doi: 10.11728/cjss2022.04.yg20

Advances in the Researches of the Middle and Upper Atmosphere in China in 2020–2022

doi: 10.11728/cjss2022.04.yg20
More Information
  • [1] XIA Y, CHENG X W, LI F Q, et al. Sodium lidar observation over full diurnal cycles in Beijing, China[J]. Applied Optics, 2020, 59(6): 1529-1536 doi: 10.1364/AO.382077
    [2] WU F J, ZHENG H R, CHENG X W, et al. Simultaneous detection of the Ca and Ca+ layers by a dual-wavelength tunable Lidar system[J]. Applied Optics, 2020, 59(13): 4122-4130 doi: 10.1364/AO.381699
    [3] DU L F, JIAO J, LI F Q, et al. The technical optimization of Na-K lidar and to measure mesospheric Na and K over Brazil[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 259: 107383 doi: 10.1016/j.jqsrt.2020.107383
    [4] WU F J, ZHENG H R, YANG Y, et al. Lidar observations of the upper atmospheric nickel layer at Beijing (40°N, 116°E)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260: 107468 doi: 10.1016/j.jqsrt.2020.107468
    [5] CAI B, XU Q C, HU X, et al. Initial results of meteor wind with Langfang medium frequency radar[J]. Atmosphere, 2020, 11(5): 507 doi: 10.3390/atmos11050507
    [6] BAN C, PAN W L, WANG R, et al. Initial results of Rayleigh scattering lidar observations at Zhongshan station, Antarctica[J]. Infrared and Laser Engineering, 2021, 50(3): 20210010 doi: 10.3788/IRLA20210010
    [7] CHEN X C, HUANG W T, BAN C, et al. Dynamic properties of a sporadic sodium layer revealed by observations over Zhongshan, Antarctica: A case study[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029787
    [8] TIAN Y F, CHEN Z, LÜ D R. A dataset of Beijing MST radar horizontal wind fields at Xianghe Station in 2012[J]. China Scientific Data, 2021, 6(2): 24-34 doi: 10.11922/csdata.2020.0078.zh
    [9] CHEN Z, TIAN Y F, LÜ D R. Improving the processing algorithm of Beijing MST radar power spectral density data[J]. Journal of Applied Meteorological Science, 2020, 31(6): 694-705
    [10] WU K, XU J Y, YUE X N, et al. Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and GNSS network during the storm time[J]. Annales Geophysicae, 2020, 38: 163-177 doi: 10.5194/angeo-2019-122
    [11] WU K, XU J Y, ZHU Y J, et al. Ionospheric plasma vertical drift and zonal wind variations cause unusual evolution of EPBs during a geomagnetically quiet night[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029893 doi: 10.1029/2021JA029893
    [12] SUN L C, XU J Y, ZHU Y J, et al. Case study of an equatorial plasma bubble event investigated by multiple ground-based instruments at low latitudes over China[J]. Earth and Planetary Physics, 2021, 5(5): 435-449 doi: 10.26464/epp2021048
    [13] GAO H, XU J Y, CHEN G M, et al. Statistical structure of nighttime O2 aurora from SABER and its dependence on geomagnetic and solar activities in winter[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028302 doi: 10.1029/2020JA028302
    [14] ZHU Y J, KAUFMANN M, CHEN Q Y, et al. A comparison of OH nightglow volume emission rates as measured by SCIAMACHY and SABER[J]. Atmospheric Measurement Techniques, 2020, 13(6): 3033-3042 doi: 10.5194/amt-13-3033-2020
    [15] YU B K, SCOTT C J, XUE X H, et al. Derivation of global ionospheric Sporadic E critical frequency (foEs) data from the amplitude variations in GPS/GNSS radio occultations[J]. Royal Society Open Science, 2020, 7(7): 200320 doi: 10.1098/rsos.200320
    [16] YU B K, SCOTT C J, XUE X H, et al. Using GNSS radio occultation data to derive critical frequencies of the ionospheric sporadic E layer in real time[J]. GPS Solutions, 2021, 25(1): 14 doi: 10.1007/s10291-020-01050-6
    [17] YU B K, XUE X H, SCOTT C J, et al. Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation[J]. Atmospheric Chemistry and Physics, 2021, 21(5): 4219-4230 doi: 10.5194/acp-21-4219-2021
    [18] WU J F, FENG W H, LIU H L, et al. Self-consistent global transport of metallic ions with WACCM-X[J]. Atmospheric Chemistry and Physics, 2021, 21(20): 15619-15630 doi: 10.5194/acp-21-15619-2021
    [19] ZHONG W, XUE X H, YI W, et al. Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial resolution distribution[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3973-3988 doi: 10.5194/amt-2020-353
    [20] XIA Y, HUANG Y, HU Y Y, et al. Lower stratospheric water vapor variations diagnosed from satellite observations, reanalysis, and a chemistry-climate model[J]. Journal of Meteorological Research, 2021, 35(4): 701-715 doi: 10.1007/s13351-021-0193-0
    [21] XIA Y, CHENG X W, LI F Q, et al. Diurnal variation of atmospheric metal Na layer and nighttime top extension detected by a Na lidar with narrowband spectral filters at Beijing, China[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255: 107256 doi: 10.1016/j.jqsrt.2020.107256
    [22] XIA Y, NOZAWA S, JIAO J, et al. Statistical study on Sporadic Sodium Layers (SSLs) based on diurnal sodium lidar observations at Beijing, China (40.5°N, 116°E)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 212: 105512 doi: 10.1016/j.jastp.2020.105512
    [23] HU D Z, GUAN Z Y, LIU M C, et al. Dynamical mechanisms for the recent ozone depletion in the arctic stratosphere linked to North Pacific Sea surface temperatures[J]. Climate Dynamics, 2022, 58(9): 2663-2679
    [24] LIU M C, HU D Z. Contrast relationships between arctic oscillation and ozone in the stratosphere over the arctic in early and mid‐to‐late winter[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(5): e2020JD033426 doi: 10.1029/2020JD033426
    [25] LIU M C, HU D Z. Different relationships between arctic oscillation and ozone in the stratosphere over the arctic in January and February[J]. Atmosphere, 2021, 12(2): 129 doi: 10.3390/atmos12020129
    [26] XU W W, SONG Q Q, LI Y J, et al. Effects of stationary and transient transport of ozone on the ozone valley over the Tibetan Plateau in summer[J]. Frontiers in Earth Science, 2021, 9: 608018 doi: 10.3389/feart.2021.608018
    [27] LIU Y K, XU J Y, XIONG C, et al. Main wave sources of the longitudinal structures of equatorial electric field[J]. Geophysical Research Letters, 2021, 48(9): e2021GL092426 doi: 10.1029/2021GL092426
    [28] YANG J, QIE X S, ZHONG L H, et al. Analysis of a gigantic jet in southern China: morphology, meteorology, storm evolution, lightning and narrow bipolar events[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2019JD031538 doi: 10.1029/2019JD031538
    [29] LIU F F, ZHU B Y, LU G P, et al. Meteorological and electrical conditions of two mid-latitude thunderstorms producing blue discharges[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(8): e2020JD033648 doi: 10.1029/2020JD033648
    [30] LIU F F, LU G P, NEUBERT T, et al. Optical emissions associated with narrow bipolar events in radio signals from thunderstorm clouds penetrating into the stratosphere[J]. Nature Communications, 2021, 12(1): 6631 doi: 10.1038/s41467-021-26914-4
    [31] LIU F F, ZHU B Y, LU G P, et al. Outbreak of negative narrow bipolar events in two mid-latitude thunderstorms featuring overshooting tops[J]. Remote Sensing, 2021, 13(24): 5130 doi: 10.3390/rs13245130
    [32] REN H, LU G P, CUMMER S A, et al. Comparison between high-speed video observation of sprites and broadband sferic measurements[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093094 doi: 10.1029/2021GL093094
    [33] WANG Y P, LU G P, CUMMER S A, et al. Ground observation of negative sprites over a tropical thunderstorm as the embryo of Hurricane Harvey (2017)[J]. Geophysical Research Letters, 2021, 48(10): e2021GL094032 doi: 10.1029/2021GL094032
    [34] WANG Y P, LU G P, PENG K M, et al. Space-based observation of a negative sprite with an unusual signature of associated sprite CURRENT[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(4): e2020JD033686 doi: 10.1029/2020JD033686
    [35] ZHANG H B, LU G P, LYU F C, et al. On the terrestrial gamma-ray flashes preceding narrow bipolar events produced in tropical thunderstorms[J]. Geophysical Research Letters, 2021, 48(8): e2020GL092160 doi: 10.1029/2020GL092160
    [36] ZHANG J K, ZHANG C Y, ZHANG K Q, et al. The role of chemical processes in the Quasi-Biennial Oscillation (QBO) signal in stratospheric ozone[J]. Atmospheric Environment, 2021, 244: 117906 doi: 10.1016/j.atmosenv.2020.117906
    [37] XIE F, ZHANG J K, LI X T, et al. Independent and joint influences of eastern Pacific El Niño–southern oscillation and quasi-biennial oscillation on Northern Hemispheric stratospheric ozone[J]. International Journal of Climatology, 2020, 40(12): 5289-5307 doi: 10.1002/joc.6519
    [38] WANG Z, ZHANG J K, WANG T, et al. Analysis of the antarctic ozone hole in November[J]. Journal of Climate, 2021, 34(16): 6513-6529
    [39] ZHANG K Q, DUAN J K, ZHAO S Y, et al. Evaluating the ozone valley over the Tibetan Plateau in CMIP6 models[J]. Advances in Atmospheric Sciences, 2022, 39(7): 1167-1183 doi: 10.1007/s00376-021-0442-2
    [40] XIE F, TIAN W S, ZHOU X, et al. Increase in lower stratospheric water vapor in the past 100 years related to tropical Atlantic warming[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090539
    [41] ZHANG J Q, XIA X G, WU X. First in situ UV profile across the UTLS accompanied by ozone measurement over the Tibetan Plateau[J]. Journal of Environmental Sciences, 2020, 98: 71-76 doi: 10.1016/j.jes.2020.05.020
    [42] ZHANG Y L, TAO M C, ZHANG J Q, et al. Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations[J]. Atmospheric Chemistry and Physics, 2020, 20(21): 13343-13354 doi: 10.5194/acp-20-13343-2020
    [43] LI D, VOGEL B, MÜLLER R, et al. Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data[J]. Atmospheric Chemistry and Physics, 2020, 20(7): 4133-4152 doi: 10.5194/acp-20-4133-2020
    [44] MA D Y, BIAN J C, LI D, et al. Mixing characteristics within the tropopause transition layer over the Asian summer monsoon region based on ozone and water vapor sounding data[J]. Atmospheric Research, 2022, 271: 106093 doi: 10.1016/j.atmosres.2022.106093
    [45] DAI Y R, PAN W L, QIAO S, et al. Seasonal variations of mesospheric densities observed by Rayleigh Lidar at Golmud, Qinghai[J]. Chinese Journal of Space Science, 2020, 40(2): 207-214 doi: 10.11728/cjss2020.02.207
    [46] JIAO J, FENG W H, WU F J, et al. A Comparison of the midlatitude nickel and sodium layers in the mesosphere: Observations and modeling[J]. Journal of Geophysical Research: Space Physics, 2022, 127(2): e2021JA030170 doi: 10.1029/2021JA030170
    [47] ZHOU Q, CHEN W. Possible influences of the solar cycle on the onset of South China Sea summer monsoon[J]. Journal of Tropical Meteorology, 2020, 36(1): 25-31
    [48] ZHOU Q, CHEN W. Possible linkages between the 11-year solar cycle and Antarctic sea ice variability[J]. Chinese Journal of Polar Research, 2020, 32(3): 290-300
    [49] ZOU Z C, XUE X H, YI W, et al. Response of the high-latitude upper mesosphere to energetic electron precipitation[J]. The Astrophysical Journal, 2020, 893(1): 55 doi: 10.3847/1538-4357/ab7eb0
    [50] WU J, FENG W, XUE X, et al. The 27-day solar rotational cycle response in the mesospheric metal layers at low latitudes[J]. Geophysical Research Letters, 2019, 46(13): 7199-7206 doi: 10.1029/2019GL083888
    [51] XIA Y, WANG Y W, HUANG Y, et al. Significant contribution of stratospheric water vapor to the poleward expansion of the hadley circulation in autumn under greenhouse warming[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094008
    [52] XIA Y, HU Y Y, ZHANG J K, et al. Record arctic ozone loss in spring 2020 is likely caused by north pacific warm sea surface temperature anomalies[J]. Advances in Atmospheric Sciences, 2021, 38(10): 1723-1736 doi: 10.1007/s00376-021-0359-9
    [53] RAO J, LIU S M, CHEN Y H. Northern Hemisphere sudden stratospheric warming and its downward impact in four Chinese CMIP6 models[J]. Advances in Atmospheric Sciences, 2021, 38(2): 187-202 doi: 10.1007/s00376-020-0250-0
    [54] RAO J, GARFINKEL C I. CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21 st century[J]. Environmental Research Letters, 2021, 16(3): 034024 doi: 10.1088/1748-9326/abd4fe
    [55] RAO J, GARFINKEL C I. Projected changes of stratospheric final warmings in the Northern and Southern Hemispheres by CMIP5/6 models[J]. Climate Dynamics, 2021, 56(9/10): 3353-3371
    [56] XIA Y, HUANG Y, HU Y Y. Robust acceleration of stratospheric moistening and its radiative feedback under greenhouse warming[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(19): e2020JD033090
    [57] ZHANG H B, LU G P, LYU F C, et al. First measurements of low-frequency sferics associated with Terrestrial Gamma-Ray Flashes produced by equatorial thunderstorms[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089005 doi: 10.1029/2020GL089005
    [58] ZHANG J K, TIAN W S, XIE F, et al. The influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift[J]. Journal of Climate, 2020, 33(11): 4641-4658 doi: 10.1175/JCLI-D-19-0647.1
    [59] XIE F, ZHANG J K, HUANG Z, et al. An estimate of the relative contributions of sea surface temperature variations in various regions to stratospheric change[J]. Journal of Climate, 2020, 33(12): 4993-5011 doi: 10.1175/JCLI-D-19-0743.1
    [60] CHENG X, YANG J F, XIAO C Y, et al. Density correction of NRLMSISE-00 in the Middle Atmosphere (20-100 km) based on TIMED/SABER density data[J]. Atmosphere, 2020, 11(4): 341 doi: 10.3390/atmos11040341
    [61] CHENG X, XIAO C Y, YANG J F, et al. A modeling method and its application of global atmospheric density in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2227-2235
    [62] JIANG G Y, XIONG C, STOLLE C, et al. Comparison of thermospheric winds measured by GOCE and ground-based FPIs at low and middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028182 doi: 10.1029/2020JA028182
    [63] WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium-scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723 doi: 10.1029/2020JA028723
    [64] SUN L C, XU J Y, ZHU Y J, et al. Interaction between a southwestward propagating MSTID and a poleward moving WSA-like plasma patch on a magnetically quiet night at midlatitude China region[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028085 doi: 10.1029/2020JA028085
    [65] SUN L C, XU J Y, ZHU Y J, et al. Interaction between an EMSTID and an EPB in the EIA Crest region over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA029005 doi: 10.1029/2020JA029005
    [66] LUO J, XU J Y, WU K, et al. The influence of ionospheric neutral wind variations on the morphology and propagation of medium scale traveling ionospheric disturbances on 8 th August 2016[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029037
    [67] SHANG S P, SHI J K, WANG G J, et al. Analysis of the long lasting events of ionospheric irregularities near the equatorial region of East Asia based on various observations[J]. Advances in Space Research, 2021, 68(5): 2244-2255 doi: 10.1016/j.asr.2020.12.026
    [68] YI W, XUE X H, REID I M, et al. Climatology of interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(6): e2020JD034301 doi: 10.1029/2020JD034301
    [69] YI W, REID I M, XUE X H, et al. First observations of Antarctic mesospheric tidal wind responses to recurrent geomagnetic activity[J]. Geophysical Research Letters, 2021, 48(4): e2020GL089957 doi: 10.1029/2020GL089957
    [70] YU B K, SCOTT C J, XUE X H, et al. A Signature of 27 day solar rotation in the concentration of metallic ions within the terrestrial ionosphere[J]. The Astrophysical Journal, 2021, 916(2): 106 doi: 10.3847/1538-4357/ac0886
    [71] HUANG C M, LI W, ZHANG S D, et al. Investigation of dominant traveling 10-day wave components using long-term MERRA-2 database[J]. Earth, Planets and Space, 2021, 73: 85 doi: 10.1186/s40623-021-01410-7
    [72] LI W, HUANG C M, ZHANG S D. Global characteristics of the westward-propagating Quasi-16-day wave with zonal wavenumber 1 and the connection with the 2012/2013 SSW revealed by ERA-Interim[J]. Earth, Planets and Space, 2021, 73: 113 doi: 10.1186/s40623-021-01431-2
    [73] Tang W T, Zhang S D, Huang C M, et al. Latitudinal- and height-dependent long-term climatology of propagating quasi-16-day waves in the troposphere and stratosphere[J]. Earth, Planets and Space, 2021, 73: 210 doi: 10.1186/s40623-021-01544-8
    [74] GONG Y, LV X D, ZHANG S D, et al. Climatology and seasonal variation of the thermospheric tides and their response to solar activities over Arecibo[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 215: 105592 doi: 10.1016/j.jastp.2021.105592
    [75] GONG Y, XUE J W, MA Z, et al. Strong quarterdiurnal tides in the mesosphere and lower thermosphere during the 2019 Arctic sudden stratospheric warming over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA029066 doi: 10.1029/2020JA029066
    [76] MA Z, GONG Y, ZHANG S D, et al. Understanding the excitation of quasi-6-day waves in both hemispheres during the September 2019 Antarctic SSW[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(3): e2021JD035984 doi: 10.1029/2021JD035984
    [77] MA Z, GONG Y, ZHANG S D, et al. First observational evidence for the role of polar vortex strength in modulating the activity of planetary waves in the MLT region[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096548 doi: 10.1029/2021GL096548
    [78] RAO J, GARFINKEL C I, WHITE I P. Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models[J]. Journal of Climate, 2020, 33(11): 4787-4813 doi: 10.1175/JCLI-D-19-0663.1
    [79] RAO J, GARFINKEL C I, WHITE I P. How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models[J]. Journal of Climate, 2020, 33(20): 8975-8996 doi: 10.1175/JCLI-D-20-0024.1
    [80] RAO J, GARFINKEL C I, WHITE I P. Projected strengthening of the extratropical surface impacts of the stratospheric quasi-biennial oscillation[J]. Geophysical Research Letters, 2020, 47(20): e2020GL089149
    [81] RAO J, GARFINKEL C I, WHITE I P. Development of the extratropical response to the stratospheric quasi-biennial oscillation[J]. Journal of Climate, 2021, 34(17): 7239-7255
    [82] HU Y H, TIAN W S, ZHANG J K, et al. Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000 s: a response to sea surface temperature trends[J]. Atmospheric Chemistry and Physics, 2022, 22(2): 1575-1600 doi: 10.5194/acp-22-1575-2022
    [83] QUAN L, CAI B, HU X, et al. Study of ionospheric D region changes during solar flares using MF radar measurements[J]. Advances in Space Research, 2021, 67(2): 715-721 doi: 10.1016/j.asr.2020.10.015
    [84] CAI B, XU Q C, HU X, et al. Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China[J]. Earth and Planetary Physics, 2021, 5(3): 270-279
    [85] TIAN C X, HU X, LIU Y R, et al. Seasonal variations of high-frequency gravity wave momentum fluxes and their forcing toward zonal winds in the mesosphere and lower thermosphere over Langfang, China (39.4°N, 116.7°E)[J]. Atmosphere, 2020, 11(11): 1253 doi: 10.3390/atmos11111253
    [86] TIAN C X, HU X, LIU A Z, et al. Diurnal and seasonal variability of short-period gravity waves at ~40° N using meteor radar wind observations[J]. Journal of Advances in Space Research, 2021, 68(3): 1341-1355 doi: 10.1016/j.asr.2021.03.028
    [87] SHI G C, HU X, YAO Z G, et al. Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection[J]. Earth and Planetary Physics, 2021, 5(1): 79-89
    [88] GUO W J, YAO Z G, HU X, et al. Research on global stratospheric gravity wave characteristics by AIRS observation data[J]. Chinese Journal of Space Science, 2021, 41(4): 609-616
    [89] SUN C, YANG C Y, LI T. Dynamical influence of the Madden-Julian oscillation on the Northern Hemisphere mesosphere during the boreal winter[J]. Science China Earth Sciences, 2021, 64(8): 1254-1266 doi: 10.1007/s11430-020-9779-2
    [90] YANG C Y, SMITH A K, LI T, et al. Can the Madden‐Julian Oscillation affect the Antarctic total column ozone[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088886 doi: 10.1029/2020GL088886
    [91] CHENG H, HUANG K M, LIU A Z, et al. A quasi 27 day oscillation activity from the troposphere to the mesosphere and lower thermosphere at low latitudes[J]. Earth, Planets and Space, 2021, 73: 183 doi: 10.1186/s40623-021-01521-1
    [92] MA Z, GONG Y, ZHANG S D, et al. Study of a quasi-27-day wave in the MLT region during recurrent geomagnetic storms in autumn 2018[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028865 doi: 10.1029/2020JA028865
    [93] BAI X Y, HUANG K M, ZHANG S D, et al. Anomalous changes of temperature and ozone QBOs in 2015-2017 from radiosonde observation and MERRA-2 reanalysis[J]. Earth and Planetary Physics, 2021, 5(3): 280-289 doi: 10.26464/epp2021028
    [94] DU M K, HUANG K M, ZHANG S D, et al. Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data[J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13553-13569 doi: 10.5194/acp-21-13553-2021
    [95] HUANG K M, LIU H, LIU A Z, et al. Investigation on spectral characteristics of gravity waves in the MLT using lidar observations at Andes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028918 doi: 10.1029/2020JA028918
    [96] LI Q, ZHANG S D, HUANG C M, et al. Statistical spectral characteristics of three-dimensional winds in the mesopause region revealed by the Andes lidar[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035586 doi: 10.1029/2021JD035586
    [97] NING W H, HUANG K M, ZHANG S D, et al. A statistical investigation of inertia gravity wave activity based on MST radar observations at Xianghe (116.9°E, 39.8°N), China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(1): e2021JD035315 doi: 10.1029/2021JD035315
    [98] LIU X, XU J Y, YUE J, et al. Persistent layers of enhanced gravity wave dissipation in the upper mesosphere revealed from SABER observations[J]. Geophysical Research Letters, 2022, 49(5): e2021GL097038 doi: 10.1029/2021gl097038
    [99] LIU X, XU J Y, YUE J, et al. Gravity-wave-perturbed wind shears derived from SABER temperature observations[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 14437-14456 doi: 10.5194/acp-20-14437-2020
    [100] LIU X, XU J Y, YUE J. Global static stability and its relation to gravity waves in the middle atmosphere[J]. Earth and Planetary Physics, 2020, 4(5): 504-512 doi: 10.26464/epp2020047
    [101] LIU X, XU J Y, YUE J, et al. Global balanced wind derived from SABER temperature and pressure observations and its validations[J]. Earth System Science Data, 2021, 13(12): 5643-5661 doi: 10.5194/essd-13-5643-2021
    [102] ZOU X, WANG J H, LI F Q, et al. Atmospheric turbulence spectrum in high resolution mode detected by a high power-aperture sodium lidar over Yanqing, Beijing (40.47°N, 115.97°E)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270: 107706 doi: 10.1016/j.jqsrt.2021.107706
    [103] HE X, LUO J L, XU X R, et al. The QBO modulation on CO distribution in the UTLS over the Asian monsoon region during boreal summer[J]. Frontiers in Earth Science, 2021, 9: 625990 doi: 10.3389/feart.2021.625990
    [104] WANG T, TIAN W S, ZHANG J K, et al. Connections between spring arctic ozone and the summer circulation and sea surface temperatures over the western North Pacific[J]. Journal of Climate, 2020, 33(7): 2907-2923 doi: 10.1175/JCLI-D-19-0292.1
    [105] ZHANG R H, TIAN W S, WANG T. Role of the quasi-biennial oscillation in the downward extension of stratospheric northern annular mode anomalies[J]. Climate Dynamics, 2020, 55(3): 595-612
    [106] XU M, TIAN W S, ZHANG J K, et al. Distinct tropospheric and stratospheric mechanisms linking historical Barents-Kara sea-ice loss and late winter Eurasian temperature variability[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095262
    [107] XU M, TIAN W S, ZHANG J K, et al. Impact of Sea Ice reduction in the barents and Kara Seas on the variation of the East Asian Trough in Late winter[J]. Journal of Climate, 2021, 34(3): 1081-1097 doi: 10.1175/JCLI-D-20-0205.1
    [108] MA T J, CHEN W, HUANGFU J L, et al. The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter[J]. International Journal of Climatology, 2021, 41(14): 6254-6269 doi: 10.1002/joc.7192
    [109] CHEN W, ZHOU Q, XUE X. Solar cycle modulation of the relationship between the boreal spring Northern Atlantic Oscillation and the East and Southeast Asian summer climate[J]. Meteorology and Atmospheric Physics, 2020, 132(2): 287-295 doi: 10.1007/s00703-019-00687-4
    [110] XUE X, CHEN W, ZHOU Q. Solar cycle modulation of the connection between boreal winter ENSO and following summer South Asia high[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 211: 105466 doi: 10.1016/j.jastp.2020.105466
    [111] HUANGFU J L, TANG Y L, MA T J, et al. Influence of the QBO on tropical convection and its impact on tropical cyclone activity over the western North Pacific[J]. Climate Dynamics, 2021, 57(3): 657-669 doi: 10.1007/s00382-021-05731-x
    [112] WANG L, WANG L, CHEN W, et al. Modulation of winter precipitation associated with tropical cyclone of the western North Pacific by the stratospheric Quasi-Biennial oscillation[J]. Environmental Research Letters, 2021, 16(5): 054004 doi: 10.1088/1748-9326/abf3dd
    [113] LU Y J, TIAN W S, ZHANG J K, et al. The impact of the stratospheric polar vortex shift on the Arctic oscillation[J]. Journal of Climate, 2021, 34(10): 4129-4143 doi: 10.1175/JCLI-D-20-0536.1
    [114] ZHANG J K, ZHENG H Y, XU M, et al. Impacts of stratospheric polar vortex changes on wintertime precipitation over the northern hemisphere[J]. Climate Dynamics, 2022, 58(11/12): 3155-3171 doi: 10.1007/s00382-021-06088-x
    [115] HU D Z, GUAN Z Y, LIU M C, et al. Is the relationship between stratospheric arctic vortex and arctic oscillation steady?[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(19): e2021JD035759
    [116] HUANG R, TIAN W S, QIE K, et al. Contrasting effects of Indian Ocean basin and dipole modes on the stratosphere[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(24): e2021JD035156
    [117] HUANG J L, HITCHCOCK P, MAYCOCK A C, et al. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions[J]. Communications Earth & Environment, 2021, 2(1): 142
    [118] HUANG J L, HITCHCOCK P, TIAN W S, et al. Stratospheric influence on the development of the 2018 late winter European cold air outbreak[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(5): e2021JD035877
    [119] LIANG R X, YU Y Y, SHI C H, et al. Role of the moist and dry components of moist isentropic mass circulation in Changing the Extratropical surface temperature in winter[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091587
    [120] LIU M C, HU D Z, ZHANG F. Connections between stratospheric ozone concentrations over the Arctic and Sea surface temperatures in the North Pacific[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(4): e2019JD031690
    [121] XIA Y, HU Y Y, HUANG Y, et al. Stratospheric ozone loss-induced cloud effects lead to less surface ultraviolet radiation over the Siberian arctic in spring[J]. Environmental Research Letters, 2021, 16(8): 084057 doi: 10.1088/1748-9326/ac18e9
    [122] XIA Y, HU Y Y, HUANG Y, et al. Significant contribution of severe ozone loss to the Siberian-arctic surface warming in spring 2020[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092509
    [123] MA J, CHEN W, NATH D, et al. Modulation by ENSO of the relationship between stratospheric sudden warming and the Madden–Julian oscillation[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088894 doi: 10.1029/2020GL088894
    [124] XU Q B, CHEN W, SONG L. Two leading modes in the evolution of major sudden stratospheric warmings and their distinctive surface influence[J]. Geophysical Research Letters, 2022, 49(2): e2021GL095431 doi: 10.1029/2021GL095431
    [125] KOVAL A V, CHEN W, DIDENKO K A, et al. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events[J]. Annales Geophysicae, 2021, 39(2): 357-368 doi: 10.5194/angeo-39-357-2021
    [126] MA J, CHEN W, LAN X Q. Comparative analysis of the evolution processes of the strong and weak stratosphere polar vortex events in boreal winter[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(4): 726-747 doi: 10.3878/j.issn.1006-9895.1906.19110
    [127] WEI K, MA J, CHEN W, et al. Longitudinal peculiarities of planetary waves-zonal flow interactions and their role in stratosphere-troposphere dynamical coupling[J]. Climate Dynamics, 2021, 57(9): 2843-2862 doi: 10.1007/s00382-021-05842-5
    [128] WEI K, CHEN W, XU L Y, et al. Stratosphere amplifies the global climate effect of wildfires[J]. Science China Earth Sciences, 2020, 63(2): 309-311 doi: 10.1007/s11430-019-9560-3
    [129] LU Q, RAO J, LIANG Z Q, et al. The Sudden Stratospheric Warming in January 2021[J]. Environmental Research Letters, 2021, 16(8): 084029 doi: 10.1088/1748-9326/ac12f4
    [130] RAO J, GARFINKEL C I, WHITE I P. Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2 S) models[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(2): e2019JD031919
    [131] RAO J, GARFINKEL C I, WU T W, et al. The January 2021 sudden stratospheric warming and its prediction in subseasonal to seasonal models[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(21): e2021JD035057
    [132] RAO J, GARFINKEL C I, WHITE I P, et al. The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2 S models[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(14): e2020jd032723
    [133] RAO J, GARFINKEL C I. Arctic Ozone loss in March 2020 and its seasonal prediction in CFSv2: a comparative study with the 1997 and 2011 cases[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(21): e2020JD033524
    [134] RAO J, GARFINKEL C I. The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: implications for empirical prediction of the low Arctic total ozone extreme[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD034190
    [135] YU S Y, RAO J, GUO D. Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling[J]. Earth and Planetary Physics, 2022, 6(2): 177-190
    [136] RAO J, REN R C. Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO[J]. Climate Dynamics, 2020, 54(3/4): 2249-2266
    [137] REN R C, XIA X, RAO J. Topographic forcing from east Asia and North America in the northern winter stratosphere and their mutual interference[J]. Journal of Climate, 2019, 32(24): 8639-8658 doi: 10.1175/JCLI-D-19-0107.1
    [138] XIA X, REN R C, YU Y Y. Dynamical role of the Rocky Mountain controlled by East Asian topographies in modulating the tropospheric westerly jet in northern winter[J]. Atmospheric and Oceanic Science Letters, 2020, 12(1): 66-72
    [139] YU Y Y, REN R C, XIA X, et al. A dissection of the topographic effects from Eurasia and North America on the isentropic meridional mass circulation in northern winter[J]. Climate Dynamics, 2022. DOI: 10.1007/s00382-021-06055-6
    [140] XIE J C, HU J G, XU H M, et al. Dynamic diagnosis of stratospheric sudden warming event in the boreal winter of 2018 and its possible impact on weather over North America[J]. Atmosphere, 2020, 11(5): 438 doi: 10.3390/atmos11050438
    [141] HUANG W, YU Y Y, YIN Z C, et al. Appreciable role of stratospheric polar vortex in the abnormal diffusion of air pollutant in North China in 2015/2016 winter and implications for prediction[J]. Atmospheric Environment, 2021, 259: 118549 doi: 10.1016/j.atmosenv.2021.118549
    [142] LU Q, RAO J, GUO D, et al. Downward propagation of sudden stratospheric warming signals and the local environment in the Beijing-Tianjin-Hebei region: A comparative study of the 2018 and 2019 winter cases[J]. Atmospheric Research, 2021, 254: 105514 doi: 10.1016/j.atmosres.2021.105514
    [143] CHEN D, ZHOU T J, GUO D, et al. Simulation of the multi-timescale stratospheric intrusion processes in a typical cut-off low over Northeast Asia[J]. Atmosphere, 2022, 13(1): 68
    [144] XIAO N, ZHANG J K, TIAN W S, et al. Effects of nitrogen oxide emissions over east asia on ozone and temperature in UTLS region of the northern hemisphere[J]. Plateau Meteorology, 2020, 39(2): 290-295
    [145] Tian H Y, Xu X R, Chen H B, et al. Analysis of the anomalous signals near the tropopause before the overshooting convective system onset over the Tibetan Plateau[J]. Advances in Meteorology, 2020, 2020: 8823446
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回