留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent Progress of Earth Science Satellite Missions in China

SHI Jiancheng LÜ Daren WANG Yu DU Yan PANG Yong YANG Dongxu WANG Xin DONG Xiaolong YANG Xiaofeng

SHI Jiancheng, LÜ Daren, WANG Yu, DU Yan, PANG Yong, YANG Dongxu, WANG Xin, DONG Xiaolong, YANG Xiaofeng. Recent Progress of Earth Science Satellite Missions in China. Chinese Journal of Space Science, 2022, 42(4): 712-723 doi: 10.11728/cjss2022.04.yg21
Citation: SHI Jiancheng, LÜ Daren, WANG Yu, DU Yan, PANG Yong, YANG Dongxu, WANG Xin, DONG Xiaolong, YANG Xiaofeng. Recent Progress of Earth Science Satellite Missions in China. Chinese Journal of Space Science, 2022, 42(4): 712-723 doi: 10.11728/cjss2022.04.yg21

Recent Progress of Earth Science Satellite Missions in China

doi: 10.11728/cjss2022.04.yg21
More Information
  • Figure  1.  LiDAR and multi-angle optical cameras configuration of the Chinese Terrestrial Ecosystem Carbon Monitoring Satellite (TECMS)

    Figure  2.  Schematic diagram of multiscale ocean dynamics (updated from Chelton, 2011)

    Figure  3.  Schematic diagram of the wide-swath OSCOM surface observations. The swath of OSCOM at the Earth’s surface exceeds 1000 km in 650 km high orbit

    Figure  4.  Schematic view of the measurement concept of CACES, comprising the LIO, LMO components and the hyperspectral imager

    Table  1.   Imaging modes of LT-1. The achievable polarization, swath width, resolution and range of incidence angles are given in the description of each mode

    ModeStrip 1Strip 2Strip 3Strip 4Strip 5Scan
    Polarization Single/Dual Pol., Compact Pol Single/Dual Pol., Compact Pol Quad Pol., Hybrid Pol Quad Pol., Hybrid Pol Single/Dual Pol., Compact Pol Single/Dual Pol., Compact Pol
    Resolution 3 m×3 m
    (Nominal)
    12 m×12 m
    (Nominal)
    3 m×3 m
    (Nominal)
    6 m×6 m
    (Nominal)
    24 m×24 m
    (Nominal)
    30 m×30 m
    (Nominal)
    Swath width 50 km 100 km 50 km 30 km 160 km 400 km
    Incidence
    imaging angle
    20°–53°
    (Imaging)
    10°–60°
    (Extended)
    20°–53° 10°–60° 13°–21° 15.7–30° 20°–49°
    InSAR 20°–46° 20°–46°
    下载: 导出CSV

    Table  2.   Expected performances of OSCOM

    VariablesSpatial resolutionAccuracy/precisionSwath/temporal coverage
    Speed accuracyDirection accuracy
    OSC5 km0.1 m·s–115°>1000 km/ <3 days globally, mid-to-high latitude daily
    OSVW5 km1.5 m·s–115°
    OSWS10 km10%@50–500 m wavelength
    下载: 导出CSV

    Table  3.   Initial payload configuration of the Terrestrial Water Resources Satellite

    L-band active-passive microwave imager
    Parameters L-band radiometer L-band radar
    Frequency 1.413 GHz 1.26 GHz
    Polarization H, V, and T3 HH, VV, HV, and VH
    Range of incidence angle 0°–40° or 30°–52° (to be adopted)
    Antenna Parabolic cylinder antenna (12 m×10 m)
    Spatial resolution 18 km 1.5 km
    Swath width 1000 km
    Wide-swath multispectral camera
    Parameters Visible bands Near-infrared bands
    Spectral range 0.4–0.67 μm 0.85–0.97 μm
    Spatial resolution 16 m
    Swath width 800 km
    Wide-swath programmable hyperspectral camera
    Parameters Visible and near-infrared bands Short-wave infrared bands
    Spectral range 0.4–1.0 μm 1.0–1.68 μm
    Spectral bands 128/64 80/40
    Spatial resolution 25 m
    Swath width 120 km
    Multi-angle thermal infrared imager
    Spectral range 10.5–12.5 μm
    View angles +48°, 0°, –31°
    Spatial resolution 100 m
    Swath width 1000 km
    下载: 导出CSV
  • [1] YANG D X, LIU Y, CAI Z, et al. First global carbon dioxide maps produced from TanSat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6): 621-623 doi: 10.1007/s00376-018-7312-6
    [2] LIU Y, WANG J, YAO L, et al. The TanSat mission: preliminary global observations[J]. Science Bulletin, 2018, 63(18): 1200-1207 doi: 10.1016/j.scib.2018.08.004
    [3] LIU Y, WANG J, YAO L, et al. TanSat mission achievements: from scientific driving to preliminary observations[J]. Chinese Journal of Space Science, 2018, 38(5): 627-639
    [4] YANG D, BOESCH H, LIU Y, et al. Toward high precision XCO2 retrievals from tansat observations: retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22): e2020JD032794
    [5] YANG D X, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Advances in Atmospheric Sciences, 2021, 38(1): 8-11 doi: 10.1007/s00376-020-0297-y
    [6] YANG D X, LIU Y, FENG L, et al. The first global carbon dioxide flux map derived from TanSat measurements[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1433-1443 doi: 10.1007/s00376-021-1179-7
    [7] WANG H M, JIANG F, LIU Y, et al. Global terrestrial ecosystem carbon flux inferred from TanSat XCO2 retrievals[J]. Journal of Remote Sensing, 2022, 2022: 9816536
    [8] DU S S, LIU L Y, LIU X J, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin, 2018, 63(22): 1502-1512 doi: 10.1016/j.scib.2018.10.003
    [9] YAO L, YANG D X, LIU Y, et al. A new global solar-induced chlorophyll fluorescence (SIF) data product from TanSat measurements[J]. Advances in Atmospheric Sciences, 2021, 38(3): 341-345 doi: 10.1007/s00376-020-0204-6
    [10] YAO L, LIU Y, YANG D X, et al. Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2[J]. Atmospheric Measurement Techniques, 2022, 15(7): 2125-2137 doi: 10.5194/amt-15-2125-2022
    [11] JIN G D, LIU K Y, LIU D C, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735-1746 doi: 10.1109/TGRS.2019.2948219
    [12] LIANG D, LIU K Y, ZHANG H, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5740-5750 doi: 10.1109/TGRS.2020.3024561
    [13] WANG W, WANG R, ZHANG Z M, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247-251 doi: 10.1109/LGRS.2015.2508102
    [14] JIN G D, DENG Y K, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155-6168 doi: 10.1109/TGRS.2019.2904627
    [15] FERRARI R, WUNSCH C. Ocean circulation kinetic energy: reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41: 253-282 doi: 10.1146/annurev.fluid.40.111406.102139
    [16] CHEN R, FLIERL G R, WUNSCH C. A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336-2352 doi: 10.1175/JPO-D-14-0009.1
    [17] NAKAMURA H, SAMPE T, GOTO A, et al. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation[J]. Geophysical Research Letters, 2008, 35(15): L15709 doi: 10.1029/2008GL034010
    [18] SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775 doi: 10.1038/s41467-018-02983-w
    [19] BOCCALETTI G, FERRARI R, ADCROFT A, et al. The vertical structure of ocean heat transport[J]. Geophysical Research Letters, 2005, 32(10): L10603 doi: 10.1029/2005GL022474
    [20] LEGECKIS R, BROWN C W, BONJEAN F, et al. The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon-Tiki in 1947[J]. Geophysical Research Letters, 2004, 31(23): L23307
    [21] YODER J A, DONEY S C, SIEGEL D A, et al. Study of marine ecosystems and biogeochemistry now and in the future: examples of the unique contributions from space[J]. Oceanography, 2010, 23(4): 104-117 doi: 10.5670/oceanog.2010.09
    [22] DOHAN K, MAXIMENKO N. Monitoring ocean currents with satellite sensors[J]. Oceanography, 2010, 23(4): 94-103 doi: 10.5670/oceanog.2010.08
    [23] DOHAN K. Ocean surface currents from satellite data[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2647-2651 doi: 10.1002/2017JC012961
    [24] LEE T, HAKKINEN S, KELLY K, et al. Satellite observations of ocean circulation changes associated with climate variability[J]. Oceanography, 2010, 23(4): 70-81 doi: 10.5670/oceanog.2010.06
    [25] TALLEY L D, PICKARD G L, EMERY W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6 th ed. Boston: Academic Press, 2011
    [26] GORDON C, COOPER C, SENIOR C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147-168
    [27] YU L S. A global relationship between the ocean water cycle and near-surface salinity[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10): C10025 doi: 10.1029/2010JC006937
    [28] YU L S, WELLER R A. Objectively analyzed air-sea heat Fluxes for the global ice-free oceans (1981–2005)[J]. Bulletin of the American Meteorological Society, 2007, 88(4): 527-540 doi: 10.1175/BAMS-88-4-527
    [29] LETSCHER R T, PRIMEAU F, MOORE J K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport[J]. Nature Geoscience, 2016, 9(11): 815-819 doi: 10.1038/ngeo2812
    [30] MAES C, GRIMA N, BLANKE B, et al. A surface “superconvergence” pathway connecting the South Indian Ocean to the subtropical South Pacific gyre[J]. Geophysical Research Letters, 2018, 45(4): 1915-1922 doi: 10.1002/2017GL076366
    [31] VAN SEBILLE E, GRIFFIES S M, ABERNATHEY R, et al. Lagrangian ocean analysis: fundamentals and practices[J]. Ocean Modelling, 2018, 121: 49-75 doi: 10.1016/j.ocemod.2017.11.008
    [32] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002
    [33] QIU B, CHEN S M, KLEIN P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55-79 doi: 10.1175/JPO-D-19-0172.1
    [34] FREEMAN A, ZLOTNICKI V, LIU T, et al. Ocean measurements from space in 2025[J]. Oceanography, 2010, 23(4): 144-161 doi: 10.5670/oceanog.2010.12
    [35] GIROTTO M, RODELL M. Terrestrial water storage[M]//MAGGIONI Y, MASSARI C. Extreme Hydroclimatic Events and Multivariate Hazards in A Changing Environment: A Remote Sensing Approach. Amsterdam: Elsevier, 2019: 41-64
    [36] SMITH E A, ASRAR G, FURUHAMA Y, et al. International Global Precipitation Measurement (GPM) program and mission: an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation from Space: EURAINSAT and the Future. Dordrecht: Springer, 2007. 611-653
    [37] KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission: new tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687 doi: 10.1109/JPROC.2010.2043032
    [38] ENTEKHABI D, NJOKU E G, O’NEILL P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716 doi: 10.1109/JPROC.2010.2043918
    [39] WENG F Z, YANG H, ZOU X L. On convertibility from antenna to sensor brightness temperature for ATMS[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 771-775 doi: 10.1109/LGRS.2012.2223193
    [40] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505 doi: 10.1126/science.1099192
    [41] BIANCAMARIA S, LETTENMAIER D P, PAVELSKY T M. The SWOT mission and its capabilities for land hydrology[M]//CAZENAVE A, CHAMPOLLION N, BENVENISTE J, et al. Remote Sensing and Water Resources. Cham: Springer, 2016: 117-147
    [42] ZHAO T J, SHI J C, LV L Q, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment, 2020, 240: 111680 doi: 10.1016/j.rse.2020.111680
    [43] SUN Yanlong, ZHAO Tianjie, LI Enchen, et al. Radiometer calibration of airborne L-band active and passive microwave detector[J]. National Remote Sensing Bulletin, 2021, 25(4): 918-928
    [44] GUO P, ZHAO T J, SHI J C, et al. Assessing the active-passive approach at variant incidence angles for microwave brightness temperature downscaling[J]. International Journal of Digital Earth, 2021, 14(10): 1273-1293 doi: 10.1080/17538947.2021.1907461
    [45] ZHAO T J, HU L, SHI J C, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020, 248: 111958 doi: 10.1016/j.rse.2020.111958
    [46] ZHAO T J, SHI J C, ENTEKHABI D, et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm[J]. Remote Sensing of Environment, 2021, 257: 112321 doi: 10.1016/j.rse.2021.112321
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  32
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-06-29
  • 网络出版日期:  2022-07-13

目录

    /

    返回文章
    返回