Recent Progress of Earth Science Satellite Missions in China
doi: 10.11728/cjss2022.04.yg21
-
Abstract: Earth Science from Space is an interdisciplinary discipline that studies the interactions, mechanisms, and evolution of the Earth system through space observation. In China, the national medium- to long-term civilian space infrastructure development plan and the space-science pilot project from the Chinese Academy of Sciences are two programs associated with advancing the Earth science from space. This paper reports recent scientific findings, developments and the status of the six missions. It is organized as the following sections: Introduction, two satellite missions that are already in orbit—the TanSat-1 for atmospheric CO2 and the LuTan-1 for global surface deformation, a Terrestrial Ecosystem Carbon Inventory Satellite to be launched in 2022, and three missions that passed the Phase II study and planned for near future—the Ocean Surface Current multiscale Observation, the Terrestrial Water Resources Satellite. Climate and Atmospheric Components Exploring Satellites (CACES), followed by the conclusion.
-
Key words:
- Earth science from space /
- Earth observation /
- Energy and water cycle /
- Carbon cycle /
- Human activities
-
Table 1. Imaging modes of LT-1. The achievable polarization, swath width, resolution and range of incidence angles are given in the description of each mode
Mode Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 Scan Polarization Single/Dual Pol., Compact Pol Single/Dual Pol., Compact Pol Quad Pol., Hybrid Pol Quad Pol., Hybrid Pol Single/Dual Pol., Compact Pol Single/Dual Pol., Compact Pol Resolution 3 m×3 m
(Nominal)12 m×12 m
(Nominal)3 m×3 m
(Nominal)6 m×6 m
(Nominal)24 m×24 m
(Nominal)30 m×30 m
(Nominal)Swath width 50 km 100 km 50 km 30 km 160 km 400 km Incidence angle imaging 20°–53°
(Imaging)
10°–60°
(Extended)20°–53° 10°–60° 13°–21° 15.7–30° 20°–49° InSAR 20°–46° 20°–46° Table 2. Expected performances of OSCOM
Variables Spatial resolution Accuracy/precision Swath/temporal coverage Speed accuracy Direction accuracy OSC 5 km 0.1 m·s–1 15° >1000 km/ <3 days globally, mid-to-high latitude daily OSVW 5 km 1.5 m·s–1 15° OSWS 10 km 10%@50–500 m wavelength Table 3. Initial payload configuration of the Terrestrial Water Resources Satellite
L-band active-passive microwave imager Parameters L-band radiometer L-band radar Frequency 1.413 GHz 1.26 GHz Polarization H, V, and T3 HH, VV, HV, and VH Range of incidence angle 0°–40° or 30°–52° (to be adopted) Antenna Parabolic cylinder antenna (12 m×10 m) Spatial resolution 18 km 1.5 km Swath width 1000 km Wide-swath multispectral camera Parameters Visible bands Near-infrared bands Spectral range 0.4–0.67 μm 0.85–0.97 μm Spatial resolution 16 m Swath width 800 km Wide-swath programmable hyperspectral camera Parameters Visible and near-infrared bands Short-wave infrared bands Spectral range 0.4–1.0 μm 1.0–1.68 μm Spectral bands 128/64 80/40 Spatial resolution 25 m Swath width 120 km Multi-angle thermal infrared imager Spectral range 10.5–12.5 μm View angles +48°, 0°, –31° Spatial resolution 100 m Swath width 1000 km -
[1] YANG D X, LIU Y, CAI Z, et al. First global carbon dioxide maps produced from TanSat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6): 621-623 doi: 10.1007/s00376-018-7312-6 [2] LIU Y, WANG J, YAO L, et al. The TanSat mission: preliminary global observations[J]. Science Bulletin, 2018, 63(18): 1200-1207 doi: 10.1016/j.scib.2018.08.004 [3] LIU Y, WANG J, YAO L, et al. TanSat mission achievements: from scientific driving to preliminary observations[J]. Chinese Journal of Space Science, 2018, 38(5): 627-639 [4] YANG D, BOESCH H, LIU Y, et al. Toward high precision XCO2 retrievals from tansat observations: retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22): e2020JD032794 [5] YANG D X, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Advances in Atmospheric Sciences, 2021, 38(1): 8-11 doi: 10.1007/s00376-020-0297-y [6] YANG D X, LIU Y, FENG L, et al. The first global carbon dioxide flux map derived from TanSat measurements[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1433-1443 doi: 10.1007/s00376-021-1179-7 [7] WANG H M, JIANG F, LIU Y, et al. Global terrestrial ecosystem carbon flux inferred from TanSat XCO2 retrievals[J]. Journal of Remote Sensing, 2022, 2022: 9816536 [8] DU S S, LIU L Y, LIU X J, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin, 2018, 63(22): 1502-1512 doi: 10.1016/j.scib.2018.10.003 [9] YAO L, YANG D X, LIU Y, et al. A new global solar-induced chlorophyll fluorescence (SIF) data product from TanSat measurements[J]. Advances in Atmospheric Sciences, 2021, 38(3): 341-345 doi: 10.1007/s00376-020-0204-6 [10] YAO L, LIU Y, YANG D X, et al. Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2[J]. Atmospheric Measurement Techniques, 2022, 15(7): 2125-2137 doi: 10.5194/amt-15-2125-2022 [11] JIN G D, LIU K Y, LIU D C, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735-1746 doi: 10.1109/TGRS.2019.2948219 [12] LIANG D, LIU K Y, ZHANG H, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5740-5750 doi: 10.1109/TGRS.2020.3024561 [13] WANG W, WANG R, ZHANG Z M, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247-251 doi: 10.1109/LGRS.2015.2508102 [14] JIN G D, DENG Y K, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155-6168 doi: 10.1109/TGRS.2019.2904627 [15] FERRARI R, WUNSCH C. Ocean circulation kinetic energy: reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41: 253-282 doi: 10.1146/annurev.fluid.40.111406.102139 [16] CHEN R, FLIERL G R, WUNSCH C. A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336-2352 doi: 10.1175/JPO-D-14-0009.1 [17] NAKAMURA H, SAMPE T, GOTO A, et al. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation[J]. Geophysical Research Letters, 2008, 35(15): L15709 doi: 10.1029/2008GL034010 [18] SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775 doi: 10.1038/s41467-018-02983-w [19] BOCCALETTI G, FERRARI R, ADCROFT A, et al. The vertical structure of ocean heat transport[J]. Geophysical Research Letters, 2005, 32(10): L10603 doi: 10.1029/2005GL022474 [20] LEGECKIS R, BROWN C W, BONJEAN F, et al. The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon-Tiki in 1947[J]. Geophysical Research Letters, 2004, 31(23): L23307 [21] YODER J A, DONEY S C, SIEGEL D A, et al. Study of marine ecosystems and biogeochemistry now and in the future: examples of the unique contributions from space[J]. Oceanography, 2010, 23(4): 104-117 doi: 10.5670/oceanog.2010.09 [22] DOHAN K, MAXIMENKO N. Monitoring ocean currents with satellite sensors[J]. Oceanography, 2010, 23(4): 94-103 doi: 10.5670/oceanog.2010.08 [23] DOHAN K. Ocean surface currents from satellite data[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2647-2651 doi: 10.1002/2017JC012961 [24] LEE T, HAKKINEN S, KELLY K, et al. Satellite observations of ocean circulation changes associated with climate variability[J]. Oceanography, 2010, 23(4): 70-81 doi: 10.5670/oceanog.2010.06 [25] TALLEY L D, PICKARD G L, EMERY W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6 th ed. Boston: Academic Press, 2011 [26] GORDON C, COOPER C, SENIOR C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147-168 [27] YU L S. A global relationship between the ocean water cycle and near-surface salinity[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10): C10025 doi: 10.1029/2010JC006937 [28] YU L S, WELLER R A. Objectively analyzed air-sea heat Fluxes for the global ice-free oceans (1981–2005)[J]. Bulletin of the American Meteorological Society, 2007, 88(4): 527-540 doi: 10.1175/BAMS-88-4-527 [29] LETSCHER R T, PRIMEAU F, MOORE J K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport[J]. Nature Geoscience, 2016, 9(11): 815-819 doi: 10.1038/ngeo2812 [30] MAES C, GRIMA N, BLANKE B, et al. A surface “superconvergence” pathway connecting the South Indian Ocean to the subtropical South Pacific gyre[J]. Geophysical Research Letters, 2018, 45(4): 1915-1922 doi: 10.1002/2017GL076366 [31] VAN SEBILLE E, GRIFFIES S M, ABERNATHEY R, et al. Lagrangian ocean analysis: fundamentals and practices[J]. Ocean Modelling, 2018, 121: 49-75 doi: 10.1016/j.ocemod.2017.11.008 [32] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002 [33] QIU B, CHEN S M, KLEIN P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55-79 doi: 10.1175/JPO-D-19-0172.1 [34] FREEMAN A, ZLOTNICKI V, LIU T, et al. Ocean measurements from space in 2025[J]. Oceanography, 2010, 23(4): 144-161 doi: 10.5670/oceanog.2010.12 [35] GIROTTO M, RODELL M. Terrestrial water storage[M]//MAGGIONI Y, MASSARI C. Extreme Hydroclimatic Events and Multivariate Hazards in A Changing Environment: A Remote Sensing Approach. Amsterdam: Elsevier, 2019: 41-64 [36] SMITH E A, ASRAR G, FURUHAMA Y, et al. International Global Precipitation Measurement (GPM) program and mission: an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation from Space: EURAINSAT and the Future. Dordrecht: Springer, 2007. 611-653 [37] KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission: new tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687 doi: 10.1109/JPROC.2010.2043032 [38] ENTEKHABI D, NJOKU E G, O’NEILL P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716 doi: 10.1109/JPROC.2010.2043918 [39] WENG F Z, YANG H, ZOU X L. On convertibility from antenna to sensor brightness temperature for ATMS[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 771-775 doi: 10.1109/LGRS.2012.2223193 [40] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505 doi: 10.1126/science.1099192 [41] BIANCAMARIA S, LETTENMAIER D P, PAVELSKY T M. The SWOT mission and its capabilities for land hydrology[M]//CAZENAVE A, CHAMPOLLION N, BENVENISTE J, et al. Remote Sensing and Water Resources. Cham: Springer, 2016: 117-147 [42] ZHAO T J, SHI J C, LV L Q, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment, 2020, 240: 111680 doi: 10.1016/j.rse.2020.111680 [43] SUN Yanlong, ZHAO Tianjie, LI Enchen, et al. Radiometer calibration of airborne L-band active and passive microwave detector[J]. National Remote Sensing Bulletin, 2021, 25(4): 918-928 [44] GUO P, ZHAO T J, SHI J C, et al. Assessing the active-passive approach at variant incidence angles for microwave brightness temperature downscaling[J]. International Journal of Digital Earth, 2021, 14(10): 1273-1293 doi: 10.1080/17538947.2021.1907461 [45] ZHAO T J, HU L, SHI J C, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020, 248: 111958 doi: 10.1016/j.rse.2020.111958 [46] ZHAO T J, SHI J C, ENTEKHABI D, et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm[J]. Remote Sensing of Environment, 2021, 257: 112321 doi: 10.1016/j.rse.2021.112321 -