留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of Planetary Science in China

HUI Hejiu RONG Zhaojin ZHANG Jinhai HU Sen LIN Honglei WEI Yong LIN Yangting

HUI Hejiu, RONG Zhaojin, ZHANG Jinhai, HU Sen, LIN Honglei, WEI Yong, LIN Yangting. Progress of Planetary Science in China. Chinese Journal of Space Science, 2022, 42(4): 754-771 doi: 10.11728/cjss2022.04.yg22
Citation: HUI Hejiu, RONG Zhaojin, ZHANG Jinhai, HU Sen, LIN Honglei, WEI Yong, LIN Yangting. Progress of Planetary Science in China. Chinese Journal of Space Science, 2022, 42(4): 754-771 doi: 10.11728/cjss2022.04.yg22

Progress of Planetary Science in China

doi: 10.11728/cjss2022.04.yg22
Funds: Supported by National Natural Science Foundation of China (41941002, 41922031, 42125303) and China National Space Administration (D020205)
More Information
  • [1] QIAN Y Q, XIAO L, HEAD J W, et al. Young lunar mare basalts in the Chang’E-5 sample return region, northern Oceanus Procellarum[J]. Earth and Planetary Science Letters, 2021, 555: 116702 doi: 10.1016/j.jpgl.2020.116702
    [2] QIAN Y Q, XIAO L, HEAD J W, et al. Copernican-aged (<200 Ma) impact ejecta at the Chang’E-5 landing site: statistical evidence from crater morphology, morphometry, and degradation models[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095341
    [3] QIAN Y Q, XIAO L, WANG Q, et al. China’s Chang’E-5 landing site: geology, stratigraphy, and provenance of materials[J]. Earth and Planetary Science Letters, 2021, 561: 116855 doi: 10.1016/j.jpgl.2021.116855
    [4] QIAN Y Q, XIAO L, HEAD J W, et al. The long sinuous Rille system in northern Oceanus Procellarum and its relation to the Chang’E-5 returned samples[J]. Geophysical Research Letters, 2021, 48(11): e2021GL092663
    [5] QIAO L, CHEN J, XU L Y, et al. Geology of the Chang’E-5 landing site: constraints on the sources of samples returned from a young nearside mare[J]. Icarus, 2021, 364: 114480 doi: 10.1016/j.icarus.2021.114480
    [6] FU X H, HOU X T, ZHANG J, et al. Possible non-mare lithologies in the regolith at the Chang’E-5 landing site: evidence from remote sensing data[J]. Journal of Geophysical Research: Planets, 2021, 126(5): e2020JE006797
    [7] XIE M G, XIAO Z Y, ZHANG X Y, et al. The provenance of regolith at the Chang’E-5 candidate landing region[J]. Journal of Geophysical Research: Planets, 2020, 125(5): e2019JE006112
    [8] BO Z, DI K C, LIU Z Q, et al. A catalogue of meter-scale impact craters in the Chang’E-5 landing area measured from centimeter-resolution descent imagery[J]. Icarus, 2022, 378: 114943 doi: 10.1016/j.icarus.2022.114943
    [9] LIN H L, LI S, XU R, et al. In situ detection of water on the moon by the Chang’E-5 lander[J]. Science Advances, 2022, 8(1): eabl9174 doi: 10.1126/sciadv.abl9174
    [10] SU Y, WANG R G, DENG X J, et al. Hyperfine structure of regolith unveiled by Chang’E-5 lunar regolith penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110414
    [11] ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(2): 229511
    [12] LI C L, HU H, YANG M F, et al. Characteristics of the lunar samples returned by Chang’E-5 mission[J]. National Science Review, 2022, 9(2): nwab188 doi: 10.1093/nsr/nwab188
    [13] YAO Y G, XIAO C J, WANG P S, et al. Instrumental neutron activation analysis of Chang’E-5 lunar regolith samples[J]. Journal of the American Chemical Society, 2022, 144(12): 5478-5484 doi: 10.1021/jacs.1c13604
    [14] LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the moon from Chang’E-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
    [15] CHE X C, NEMCHIN A, LIU D Y, et al. Age and composition of young basalts on the moon, measured from samples returned by Chang’E-5[J]. Science, 2021, 374(6569): 887-890 doi: 10.1126/science.abl7957
    [16] TIAN H C, WANG H, CHEN Y, et al. Non-KREEP origin for Chang’E-5 basalts in the procellarum KREEP terrane[J]. Nature, 2021, 600(7887): 59-63 doi: 10.1038/s41586-021-04119-5
    [17] HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’E-5[J]. Nature, 2021, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9
    [18] JI J L, HE H C, HU S, et al. Magmatic chlorine isotope fractionation recorded in apatite from Chang’E-5 basalts[J]. Earth and Planetary Science Letters, 2022, 591: 117636 doi: 10.1016/j.jpgl.2022.117636
    [19] ZHANG D, SU B, CHEN Y, et al. Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts[J]. Lithos, 2022, 414-415: 106639 doi: 10.1016/j.lithos.2022.106639
    [20] JIANG Y, LI Y, LIAO S Y, et al. Mineral chemistry and 3 D tomography of a Chang’E 5 high-Ti basalt: implication for the lunar thermal evolution history[J]. Science Bulletin, 2022, 67(7): 755-761 doi: 10.1016/j.scib.2021.12.006
    [21] MO B, GUO Z, LI Y, et al. In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques[J]. Atomic Spectroscopy, 2022, 43(1): 53-59
    [22] GU L X, CHEN Y J, XU Y C, et al. Space weathering of the Chang’E-5 lunar sample from a mid-high latitude region on the moon[J]. Geophysical Research Letters, 2022, 49(7): e2022GL097875
    [23] GUO Z, LI C, LI Y, et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: implications for thermal effects during impacts[J]. Geophysical Research Letters, 2022, 49(5): e2021GL097323
    [24] XU X Q, HUI H J, CHEN W, et al. Formation of lunar highlands anorthosites[J]. Earth and Planetary Science Letters, 2020, 536: 116138 doi: 10.1016/j.jpgl.2020.116138
    [25] WU W, XU Y G, ZHANG Z F, et al. Calcium isotopic composition of the lunar crust, mantle, and bulk silicate moon: a preliminary study[J]. Geochimica et Cosmochimica Acta, 2020, 270: 313-324 doi: 10.1016/j.gca.2019.12.001
    [26] ZENG X J, JOY K H, LI S J, et al. Oldest immiscible silica-rich melt on the moon recorded in a ~4.38 Ga zircon[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085997
    [27] ZENG X J, LI X Y, XIA X P, et al. New evidence for 4.32 Ga ancient silicic volcanism on the moon[J]. Geophysical Research Letters, 2021, 48(13): e2021GL092639
    [28] FU X H, CAO H J, CHEN J, et al. Petrology and geochemistry of lunar feldspathic meteorite Northwest Africa 11111: insights into the lithology of the lunar farside highlands[J]. Meteoritics & Planetary Science, 2021, 56(10): 1829-1856
    [29] CAO H J, LING Z C, CHEN J, et al. Petrography, mineralogy, and geochemistry of a new lunar magnesian feldspathic meteorite Northwest Africa 11460[J]. Meteoritics & Planetary Science, 2021, 56(10): 1857-1889
    [30] WU Y H, HSU W. Mineral chemistry and in situ U–Pb geochronology of the mare basalt Northwest Africa 10597: implications for low-Ti mare volcanism around 3.0 Ga[J]. Icarus, 2020, 338: 113531 doi: 10.1016/j.icarus.2019.113531
    [31] BAO Z M, SHI Y R, ANDERSON J L, et al. Petrography and chronology of lunar meteorite Northwest Africa 6950[J]. Science China Information Sciences, 2020, 63(4): 140902 doi: 10.1007/s11432-019-2809-3
    [32] ZHANG A C, PANG R L, SAKAMOTO N, et al. The Cr-Zr-Ca armalcolite in lunar rocks is loveringite: constraints from electron backscatter diffraction measurements[J]. American Mineralogist, 2020, 105(7): 1021-1029 doi: 10.2138/am-2020-7260
    [33] XING W F, LIN Y T, ZHANG C, et al. Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169[J]. Geophysical Research Letters, 2020, 47(21): e2020GL089583
    [34] ZHANG A C, JIANG Q T, TOMIOKA N, et al. Widespread tissintite in strongly shock-lithified lunar regolith breccias[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091554
    [35] CAO H J, CHEN J, FU X H, et al. Raman and infrared spectroscopic perspectives of lunar meteorite Northwest Africa 4884[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1652-1666 doi: 10.1002/jrs.5727
    [36] XIA Z P, MIAO B K, ZHANG C T, et al. Petrography and shock metamorphism of the lunar breccia meteorite NWA 13120[J]. Minerals, 2021, 11(8): 899 doi: 10.3390/min11080899
    [37] ZENG X J, LI S J, JOY K H, et al. Occurrence and implications of secondary olivine veinlets in lunar highland breccia Northwest Africa 11273[J]. Meteoritics & Planetary Science, 2020, 55(1): 36-55
    [38] ZHANG H, WEI Y, ZHONG J, et al. Whistler wings and reflected particles during solar wind interaction of lunar magnetic anomalies[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092425
    [39] ZHANG H, ZHONG J, ZHANG T X, et al. A meandering lunar wake produced by the pickup of reflected solar wind ions[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096039
    [40] ZHANG T X, ZHANG H, LAI H R, et al. Asymmetric lunar magnetic perturbations produced by reflected solar wind particles[J]. The Astrophysical Journal Letters, 2020, 893(2): L36 doi: 10.3847/2041-8213/ab8640
    [41] WEI Y, ZHONG J, HUI H, et al. Implantation of earth’s atmospheric ions into the nearside and farside lunar soil: implications to geodynamo evolution[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086208
    [42] WANG H Z, ZHANG J, SHI Q Q, et al. Earth wind as a possible exogenous source of lunar surface hydration[J]. The Astrophysical Journal Letters, 2021, 907(2): L32 doi: 10.3847/2041-8213/abd559
    [43] WANG H, Z XIAO C, SHI Q Q, et al. Energetic neutral atom distribution on the lunar surface and its relationship with solar wind conditions[J]. The Astrophysical Journal Letters, 2021, 922(2): L41 doi: 10.3847/2041-8213/ac34f3
    [44] SHANG W S, TANG B B, SHI Q Q, et al. Unusual location of the Geotail magnetopause near lunar orbit: a case study[J]. Journal of Geophysical Research:Space Physics, 2020, 125(4): e2019JA027401
    [45] WU B, DONG J, WANG Y R, et al. Characterization of the candidate landing region for Tianwen-1—China’s first mission to Mars[J]. Earth and Planetary Physics, 2021, 8(6): e2021EA001670
    [46] WU X, LIU Y, ZHANG C L, et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars[J]. Icarus, 2021, 370: 114657 doi: 10.1016/j.icarus.2021.114657
    [47] YE B L, QIAN Y Q, XIAO L, et al. Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars[J]. Earth and Planetary Science Letters, 2021, 576: 117199 doi: 10.1016/j.jpgl.2021.117199
    [48] ZHAO J N, XIAO Z J, HUANG J, et al. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094903
    [49] NIU S L, ZHANG F, DI K C, et al. Layered ejecta craters in the candidate landing areas of China’s first Mars mission (Tianwen-1): implications for subsurface volatile concentrations[J]. Journal of Geophysical Research: Planets, 2022, 127(3): e2021JE007089
    [50] WU Y H, HSU W B, LI Q L, et al. Heterogeneous Martian mantle: evidence from petrology, mineral chemistry, and in situ U-Pb chronology of the basaltic Shergottite Northwest Africa 8653[J]. Geochimica et Cosmochimica Acta, 2021, 309: 352-365 doi: 10.1016/j.gca.2021.05.011
    [51] WANG Z L, TIAN W, DI Y K. New temperature and oxygen fugacity data of Martian nakhlite from Northwest Africa (NWA) 5790 and implications for shallow sulphur degassing[J]. Earth, Planets and Space, 2021, 73(1): 164 doi: 10.1186/s40623-021-01492-3
    [52] HU S, LIN Y, ANAND M, et al. Deuterium and 37chlorine rich fluids on the surface of Mars: evidence from the enriched basaltic Shergottite Northwest Africa 8657[J]. Journal of Geophysical Research: Planets, 2020, 125(9): e2020JE006537
    [53] HU S, LIN Y T, ZHANG J C, et al. Volatiles in the Martian crust and mantle: clues from the NWA 6162 Shergottite[J]. Earth and Planetary Science Letters, 2020, 530: 115902 doi: 10.1016/j.jpgl.2019.115902
    [54] WANG S, HU S. Hydrogen isotopic variations in the Shergottites[J]. Geosciences, 2020, 10(4): 148 doi: 10.3390/geosciences10040148
    [55] SHANG S, HUI H J, YANG Y H, et al. Martian hydrothermal fluids recorded in the Sm-Nd isotopic systematics of apatite in regolith breccia meteorites[J]. Earth and Planetary Science Letters, 2022, 581: 117413 doi: 10.1016/j.jpgl.2022.117413
    [56] CAO H J, CHEN J, FU X H, et al. Raman spectroscopic and geochemical studies of primary and secondary minerals in Martian meteorite Northwest Africa 10720[J]. Journal of Raman Spectroscopy, 2022, 53(3): 420-434 doi: 10.1002/jrs.6254
    [57] ZENG X J, WU Y X, ZHAO Y S, et al. Revealing high-manganese material on Mars at microscale[J]. Geophysical Research Letters, 2021, 48(17): e2021GL093410
    [58] HU S, LI Y, GU L X, et al. Discovery of coesite from the Martian Shergottite Northwest Africa 8657[J]. Geochimica et Cosmochimica Acta, 2020, 286: 404-417 doi: 10.1016/j.gca.2020.07.021
    [59] ZHANG T, HU S, WANG N, et al. Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705[J]. Earth, Planets and Space, 2021, 73: 165 doi: 10.1186/s40623-021-01494-1
    [60] FU X H, JIA L C, WANG A L, et al. Thermal stability of akaganeite and its desiccation process under conditions relevant to Mars[J]. Icarus, 2020, 336: 113435 doi: 10.1016/j.icarus.2019.113435
    [61] MAO W S, FU X H, WU Z C, et al. The color centers in halite induced by Martian dust activities[J]. Earth and Planetary Science Letters, 2022, 578: 117302 doi: 10.1016/j.jpgl.2021.117302
    [62] QU S Y, ZHAO Y Y S, CUI H, et al. Preferential formation of chlorate over perchlorate on Mars controlled by iron mineralogy[J]. Nature Astronomy, 2022, 6(4): 436-441 doi: 10.1038/s41550-021-01588-6
    [63] WANG X Y, ZHAO Y Y S, HOOD D R, et al. Multiphase volatilization of halogens at the soil-atmosphere interface on Mars[J]. Journal of Geophysical Research:Planets, 2021, 126(12): e2021JE006929
    [64] LI D D, ZHAO Y Y S, MESLIN P Y, et al. Cryogenic origin of fractionation between perchlorate and chloride under modern Martian climate[J]. Communications Earth & Environment, 2022, 3(1): 15
    [65] QIN J Q. Mars upper atmospheric temperature and atomic oxygen density derived from the OI 130.4 nm emission observed by NASA’s MAVEN mission[J]. The Astronomical Journal, 2020, 159(5): 206 doi: 10.3847/1538-3881/ab7fae
    [66] QIN J Q. Solar cycle, seasonal, and dust-storm-driven variations of the Mars upper atmospheric state and H escape rate derived from the Lyα emission observed by NASA’s MAVEN mission[J]. The Astrophysical Journal, 2021, 912(1): 77 doi: 10.3847/1538-4357/abed4f
    [67] LIU D, YAO Z H, WEI Y, et al. Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations[J]. Earth and Planetary Physics, 2020, 4(1): 51-61
    [68] LIU D, RONG Z J, GAO J W, et al. Statistical properties of solar wind upstream of Mars: MAVEN observations[J]. The Astrophysical Journal, 2021, 911(2): 113 doi: 10.3847/1538-4357/abed50
    [69] WANG Y Q, CAO Y T, CUI J, et al. An automatic identification method for the photoelectron boundary at Mars[J]. The Astronomical Journal, 2022, 163(4): 186 doi: 10.3847/1538-3881/ac5825
    [70] ZHANG C, RONG Z J, NILSSON H, et al. MAVEN observations of periodic low-altitude plasma clouds at Mars[J]. The Astrophysical Journal Letters, 2021, 922(2): L33 doi: 10.3847/2041-8213/ac3a7d
    [71] FAN K, FRAENZ M, WEI Y, et al. Deflection of global ion flow by the Martian crustal magnetic fields[J]. The Astrophysical Journal Letters, 2020, 898(2): L54 doi: 10.3847/2041-8213/aba519
    [72] GAO J W, RONG Z J, KLINGER L, et al. A spherical harmonic Martian crustal magnetic field model combining data sets of MAVEN and MGS[J]. Earth and Planetary Physics, 2021, 8(10): e2021EA001860
    [73] LI X Z, RONG Z J, GAO J W, et al. A local Martian crustal field model: targeting the candidate landing site of the 2020 Chinese Mars Rover[J]. Earth and Planetary Physics, 2020, 4(4): 420-428
    [74] ZHANG C, RONG Z J, KLINGER L, et al. Three-dimensional configuration of induced magnetic fields around Mars[J/OL]. Earth and Space Science Open Archive, 2022. https://doi.org/10.1002/essoar.10511148.1
    [75] QIN J F, ZOU H, FUTAANA Y, et al. Double-peak structures of Martian nightside total electron content in strong crustal magnetic cusp regions[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092662
    [76] QIN J F, ZOU H, YE Y G, et al. A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with mars global surveyor and mars odyssey aerobraking observations based on the Mars climate database outputs[J]. Earth and Planetary Physics, 2020, 4(4): 408-419
    [77] ZHANG A B, KONG L G, LI W Y, et al. Tianwen-1 MINPA observations in the solar wind[J]. Earth and Planetary Physics, 2022, 6(1): 1-9 doi: 10.26464/epp2022014
    [78] FAN K, YAN L M, WEI Y, et al. The solar wind plasma upstream of Mars observed by Tianwen-1: comparison with Mars express and MAVEN[J]. Science China Earth Sciences 2022, 65(4): 759-768
    [79] ZHONG J, SHUE J H, WEI Y, et al. Effects of orbital eccentricity and IMF cone angle on the dimensions of Mercury’s magnetosphere[J]. The Astrophysical Journal, 2020, 892(1): 2 doi: 10.3847/1538-4357/ab7819
    [80] ZHANG C, RONG Z J, GAO J W, et al. The flapping motion of Mercury’s magnetotail current sheet: MESSENGER observations[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086011
    [81] ZHONG J, LEE L C, WANG X G, et al. Multiple X-line reconnection observed in Mercury’s magnetotail driven by an interplanetary coronal mass ejection[J]. The Astrophysical Journal Letters, 2020, 893(1): L11 doi: 10.3847/2041-8213/ab8380
    [82] ZHONG J, WEI Y, LEE L C, et al. Formation of macroscale flux transfer events at Mercury[J]. The Astrophysical Journal Letters, 2020, 893(1): L18 doi: 10.3847/2041-8213/ab8566
    [83] JANG E, ZHAO J T, YUE C, et al. Energetic ion dynamics near the cusp region of Mercury[J]. The Astrophysical Journal Letters, 2020, 892(1): 10 doi: 10.3847/1538-4357/ab74d1
    [84] ZHAO J T, ZONG Q G, SLAVIN J A, et al. Proton properties in Mercury's magnetotail: a statistical study[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088075
    [85] ZHAO J T, ZONG Q G, YUE C, et al. Observational evidence of ring current in the magnetosphere of Mercury[J]. Nature Communications, 2022, 13(1): 924 doi: 10.1038/s41467-022-28521-3
    [86] ZONG Q G, ZHAO J T, LIU J J, et al. Magnetic storms in Mercury’s magnetosphere[J]. Science China Technological Sciences, 2022, 65(6): 1427-1432 doi: 10.1007/s11431-022-2009-8
    [87] SHI Z, RONG Z J, FATEMI S, et al. An eastward current encircling Mercury[J]. Geophysical Research Letters, 2022, 49(10): e2022GL098415
    [88] HAN Q Q, FRAENZ M, WEI Y, et al. EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations[J]. Earth and Planetary Physics, 2020, 4(1): 73-81
    [89] GAO J W, RONG Z J, PERSSON M, et al. In situ observations of the ion diffusion region in the Venusian magnetotail[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028547
    [90] YAO Z H, BONFOND B, CLARK G, et al. Reconnection- and dipolarization-driven auroral dawn storms and injections[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2019JA027663
    [91] GUO R L, YAO Z H, GRODENT D, et al. Jupiter’s double-arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and Juno[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093964
    [92] PAN D X, YAO Z H, MANNERS H, et al. Ultralow-frequency waves in driving Jovian aurorae revealed by observations from HST and Juno[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091579
    [93] YAO Z H, DUNN W R, WOODFIELD E E, et al. Revealing the source of Jupiter’s x-ray auroral flares[J]. Science Advances, 2021, 7(28): eabf0851 doi: 10.1126/sciadv.abf0851
    [94] ZHANG B Z, DELAMERE P A, YAO Z H, et al. How Jupiter’s unusual magnetospheric topology structures its aurora[J]. Science Advances, 2021, 7(15): eabd1204 doi: 10.1126/sciadv.abd1204
    [95] XU S B, HUANG S Y, YUAN Z G, et al. Global spatial distribution of dipolarization fronts in the Saturn’s magnetosphere: Cassini observations[J]. Geophysical Research Letters, 2021, 48(17): e2021GL092701
    [96] XU S B, HUANG S Y, YUAN Z G, et al. Successive dipolarization fronts with a stepwise electron acceleration during a substorm in Saturn’s magnetotail[J]. Geophysical Research Letters, 2022, 49(5): e2021GL097227
    [97] XU Y, GUO R L, YAO Z H, et al. Properties of plasmoids observed in Saturn’s dayside and nightside magnetodisc[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096765
    [98] PAN D X, YAO Z H, GUO R L, et al. A statistical survey of low-frequency magnetic fluctuations at Saturn[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028387
    [99] HAO Y X, SUN Y X, ROUSSOS E, et al. The formation of Saturn’s and Jupiter’s electron radiation belts by magnetospheric electric fields[J]. The Astrophysical Journal Letters, 2020, 905(1): L10 doi: 10.3847/2041-8213/abca3f
    [100] LONG M Y, NI B B, CAO X, et al. Losses of radiation belt energetic particles by encounters with four of the inner moons of Jupiter[J]. Journal of Geophysical Research: Planets, 2022, 127(2): e2021JE007050
    [101] SUN Y X, HAO Y X, ROUSSOS E, et al. Zebra stripe patterns in energetic ion spectra at Saturn[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097691
    [102] SUN Y X, ROUSSOS E, HAO Y X, et al. Saturn’s inner magnetospheric convection in the view of zebra stripe patterns in energetic electron spectra[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029600
    [103] YUAN C J, ROUSSOS E, WEI Y, et al. Cassini observation of relativistic electron butterfly distributions in Saturn’s inner radiation belts: evidence for acceleration by local processes[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092690
    [104] WU S Y, YE S Y, FISCHER G, et al. Statistical study on spatial distribution and polarization of Saturn narrowband emissions[J]. The Astrophysical Journal, 2021, 918(2): 64 doi: 10.3847/1538-4357/ac0af1
    [105] YE S Y, AVERKAMP T F, KURTH W S, et al. Juno waves detection of dust impacts near Jupiter[J]. Journal of Geophysical Research: Planets, 2020, 125(6): e2019JE006367
    [106] YU X Q, SONG S Y, CHEN H F, et al. Mitigating deep dielectric charging effects at the orbits of Jovian planets[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2020, 37(5): 804-815
    [107] SHUAI K, HUI H J, ZHOU L Y, et al. Accretion regions of meteorite parent bodies inferred from a two-endmember isotopic mixing model[J]. Monthly Notices of the Royal Astronomical Society, 2022, 513(1): 363-373 doi: 10.1093/mnras/stac849
    [108] DAI D Q, BAO H M, LIU S, et al. The origins and oxygen isotopes in two Al-rich chondrules from Kainsaz CO3 carbonaceous chondrites[J]. Acta Petrologica Sinica, 2020, 36(6): 1850-1856 doi: 10.18654/1000-0569/2020.06.13
    [109] DAI D Q, BAO H M, LIU S, et al. Oxygen isotopic compositions in a plagioclase-olivine inclusion from Ningqiang similar to those in Al-rich chondrules[J]. Acta Geologica Sinica (English Edition), 2021, 95(5): 1583-1590 doi: 10.1111/1755-6724.14682
    [110] JIANG Y, KOEFOED P, PRAVDIVTSEVA O, et al. Early solar system aqueous activity: K isotope evidence from Allende[J]. Meteoritics & Planetary Science, 2021, 56(1): 61-76
    [111] XIONG Y, ZHANG A C, KAWASAKI N, et al. Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite[J]. Meteoritics & Planetary Science, 2020, 55(10): 2184-2205
    [112] ZHANG M M, BONATO E, KING A J, et al. Petrology and oxygen isotopic compositions of calcium-aluminum-rich inclusions in primitive CO3.0-3.1 chondrites[J]. Meteoritics & Planetary Science, 2020, 55(4): 911-935
    [113] ZHANG M M, LIN Y T, TANG G Q, et al. Origin of Al-rich chondrules in CV chondrites: incorporation of diverse refractory components into the ferromagnesian chondrule-forming region[J]. Geochimica et Cosmochimica Acta, 2020, 272: 198-217 doi: 10.1016/j.gca.2019.12.011
    [114] ZHANG M M, CLARK B, KING A J, et al. Shape and porosity of refractory inclusions in CV3 chondrites: a micro-computed tomography (µCT) study[J]. Meteoritics & Planetary Science, 2021, 56(3): 500-514
    [115] ZHANG A C, KAWASAKI N, BAO H M, et al. Evidence of metasomatism in the interior of Vesta[J]. Nature Communications, 2020, 11(1): 1289 doi: 10.1038/s41467-020-15049-7
    [116] HUANG L L, MIAO B K, CHEN G Z, et al. The sulfurization recorded in tridymite in the monomict eucrite Northwest Africa 11591[J]. Meteoritics & Planetary Science, 2020, 55(7): 1441-1457
    [117] LI J Y, ZHANG A C, SAKAMOTO N, et al. A new occurrence of corundum in eucrite and its significance[J]. American Mineralogist, 2020, 105(11): 1656-1661 doi: 10.2138/am-2020-7361
    [118] GUO Z, LI Y, CHEN H Y, et al. Evidence for the disproportionation of iron in a eucrite meteorite: implications for impact processes on Vesta[J]. Journal of Geophysical Research: Planets, 2021, 126(8): e2020JE006816
    [119] LI Y, RUBIN A E, HSU W. et al. Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites[J]. American Mineralogist, 2021, 106(11): 1751-1767 doi: 10.2138/am-2021-7689
    [120] YANG J, LIN Y T, CHANGELA H, et al. Early sulfur-rich magmatism on the ungrouped achondrite Northwest Africa 7325 differentiated parent body[J]. Meteoritics & Planetary Science, 2020, 55(9): 1951-1978
    [121] ZHANG A C, KAWASAKI N, KURODA M, et al. Unique angrite-like fragments in a CH3 chondrite reveal a new basaltic planetesimal[J]. Geochimica et Cosmochimica Acta, 2020, 275: 48-63 doi: 10.1016/j.gca.2020.02.014
    [122] LI S L, HSU W B, NEMCHIN A, et al. Multiple thermal events recorded in IIE silicate inclusions: evidence from in situ U-Pb dating of phosphates in Weekeroo Station[J]. Geochimica et Cosmochimica Acta, 2021, 309: 79-95 doi: 10.1016/j.gca.2021.06.017
    [123] SMITH T, HE H Y, LI S J, et al. Light noble gas records and cosmic ray exposure histories of recent ordinary chondrite falls[J]. Meteoritics & Planetary Science, 2021, 56(11): 2002-2016
    [124] WANG Y, HE H Y, LEYA I, et al. The noble gases in five ordinary chondrites from Grove Mountains in Antarctica[J]. Planetary and Space Science, 2020, 192: 105045 doi: 10.1016/j.pss.2020.105045
    [125] GUO Z, LI Y, LIU S, et al. Discovery of nanophase iron particles and high pressure clinoenstatite in a heavily shocked ordinary chondrite: implications for the decomposition of pyroxene[J]. Geochimica et Cosmochimica Acta, 2020, 272: 276-286 doi: 10.1016/j.gca.2019.10.036
    [126] HOU C P, HE J S, ZHANG L, et al. Dynamics of the charged particles released from a sun-grazing comet in the solar corona[J]. Earth and Planetary Physics, 2021, 5(3): 232-238
    [127] HE J S, CUI B, YANG L P, et al. The encounter of the parker solar probe and a comet-like object near the sun: model predictions and measurements[J]. The Astrophysical Journal, 2021, 910(1): 7 doi: 10.3847/1538-4357/abdf4a
    [128] DU K, LI S J, LEYA I, et al. The Kumtag meteorite strewn field[J]. Advances in Space Research, 2021, 67(12): 4089-4098 doi: 10.1016/j.asr.2021.02.020
    [129] FAN Y, LI S J, LIU S, et al. The distribution of the desert meteorites in China and their classification[J]. Meteoritics & Planetary Science, 2022, 57(3): 683-701
    [130] WANG N, WANG G Q, ZHANG T, et al. Metallographic cooling rate and petrogenesis of the recently found Huoyanshan iron meteorite shower[J]. Journal of Geophysical Research: Planets, 2021, 126(9): e2021JE006847
    [131] CHEN M, KOEBERL C, TAN D Y, et al. Yilan crater, China: evidence for an origin by meteorite impact[J]. Meteoritics & Planetary Science, 2021, 56(7): 1274-1292
    [132] YIN F, DAI D Q. A study of shock-metamorphic features of feldspars from the Xiuyan impact crater[J]. Minerals, 2020, 10(3): 231 doi: 10.3390/min10030231
    [133] YIN F, SHARP T G, CHEN M. Nanotextures and formation process of coesite in silica glass from the Xiuyan impact crater[J]. Meteoritics & Planetary Science, 2021, 56(6): 1212-1223
    [134] ZHAO J W, XIAO L, XIAO Z Y, et al. Shock-deformed zircon from the Chicxulub impact crater and implications for cratering process[J]. Geology, 2021, 49(7): 755-760
    [135] YAN P, XIAO Z Y, XIAO G Q, et al. Undetection of Australasian microtektites in the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110721 doi: 10.1016/j.palaeo.2021.110721
    [136] LI C L, ZUO W, WEN W B, et al. Overview of the Chang’E-4 mission: opening the frontier of scientific exploration of the lunar far side[J]. Space Science Reviews, 2021, 217(2): 35 doi: 10.1007/s11214-021-00793-z
    [137] ZHOU C Y, JIA Y Z, LIU J Z, et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5[J]. Advances in Space Research, 2022, 69(1): 823-836 doi: 10.1016/j.asr.2021.09.001
    [138] WAN W X, WANG C, LI C L, et al. China’s first mission to Mars[J]. Nature Astronomy, 2020, 4(7): 721 doi: 10.1038/s41550-020-1148-6
    [139] LI C L, ZHANG R Q, YU D Y, et al. China’s Mars exploration mission and science investigation[J]. Space Science Reviews, 2021, 217(4): 57 doi: 10.1007/s11214-021-00832-9
    [140] ZOU Y L, ZHU Y, BAI Y F, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812-823 doi: 10.1016/j.asr.2020.11.005
    [141] ZOU Y L, LIU Y, JIA Y Z. Overview of China’s upcoming Chang’E series and the scientific objectives and payloads for Chang’E 7 mission[C]//Proceedings of the 51 st Lunar and Planetary Science Conference. The Woodlands: LPI, 2020: 1755
    [142] LI R Y, HAO J L, HU S, et al. High-spatial-resolution measurement of water content in olivine using NanoSIMS 50 L[J]. Atomic Spectroscopy, 2022, 43(1): 77-83
    [143] HAO J L, YANG W, HU S, et al. Submicron spatial resolution Pb-Pb and U-Pb dating by using a NanoSIMS equipped with the new radio-frequency ion source[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1625-1633 doi: 10.1039/D1JA00085C
    [144] LIN Y, HAO J L, MIAO Z Z, et al. NanoSIMS image enhancement by reducing random noise using low-rank method[J]. Surface and Interface Analysis, 2020, 52(5): 240-248 doi: 10.1002/sia.6736
    [145] GU L X, WANG N, TANG X, et al. Application of FIB-SEM techniques for the advanced characterization of earth and planetary materials[J]. Scanning, 2020, 2020: 8406917
    [146] BAI J H, LIU F, ZHANG Z F, et al. Simultaneous measurement stable and radiogenic Nd isotopic compositions by MC-ICP-MS with a single-step chromatographic extraction technique[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2695-2703 doi: 10.1039/D1JA00302J
    [147] SHUAI K, LI W Q, HUI H J. Isobaric spike method for absolute isotopic ratio determination by MC-ICP-MS[J]. Analytical Chemistry, 2020, 92(7): 4820-4828 doi: 10.1021/acs.analchem.9b04160
    [148] RONG Z, CUI J, WEI Y. Inaugural Chinese Planetary Science Conference. Nature Astronomy, 2021, 5: 991-992
  • 加载中
计量
  • 文章访问数:  303
  • HTML全文浏览量:  93
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-06-29
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回