留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of Materials Science in Space Technology in China (2020–2022)

WEI Qiang LIU Yue XIA Chaoqun

WEI Qiang, LIU Yue, XIA Chaoqun. Progress of Materials Science in Space Technology in China (2020–2022). Chinese Journal of Space Science, 2022, 42(4): 812-823 doi: 10.11728/cjss2022.04.yg25
Citation: WEI Qiang, LIU Yue, XIA Chaoqun. Progress of Materials Science in Space Technology in China (2020–2022). Chinese Journal of Space Science, 2022, 42(4): 812-823 doi: 10.11728/cjss2022.04.yg25

Progress of Materials Science in Space Technology in China (2020–2022)

doi: 10.11728/cjss2022.04.yg25
Funds: Supported by the National Natural Science Fundation of China (51873146)
More Information
  • Figure  1.  Cross fusion of materials science in space technology

  • [1] HE Shiyu, YANG Dezhuang, JIAO Zhengkuan. Handbook of Space Materials (Vol. 1)-Physical State of Space Environment[M]. Beijing: China Astronautic Publishing House, 2012
    [2] DANIEL H, HENRY G. Spacecraft-Environment Interactions[M]. YANG Xiaoning, HUANG Jianguo, trans. Beijing: China Astronautic Publishing House, 2020
    [3] YANG Xiaoning, YANG Yong. Space Environment Engineering for Spacecraft[M]. Beijing: Beijing Institute of Technology Press, 2018
    [4] HE Shiyu, YANG Dezhuang. Handbook of Space Materials (Vol. 2) - Space Environment and Effect Calculation and Ground Simulation Test[M]. Beijing: China Astronautic Publishing House, 2021
    [5] FEUERBACHER B, HAMACHER H, NAUMANN R J. Materials Sciences in Space: A Contribution to the Scientific Basis of Space Processing[M]. Berlin: Springer, 1986. DOI: 10.1007/978-3-642-82761-7
    [6] PAN Mingxiang, WANG Weihua. Special topic: materials science in space[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(4): 047001
    [7] RUAN Ying, HU Liang, YAN Na, et al. Recent advances and future perspectives of space materials science[J]. Scientia Sinica Technologica, 2020, 50(6): 603-649
    [8] XING Yan, WANG Xiangke. Spacecraft Materials[M]. Beijing: Beijing Institute of Technology Press, 2018: 5
    [9] SHEN Zicai, GAO Hong, OUYANG Xiaoping. Connotation and system construction of aerospace material engineering[J]. Aerospace Materials & Technology, 2018, 48(2): 1-6 doi: 10.12044/j.issn.1007-2330.2018.02.001
    [10] ZHAO Xiaolei, WANG Weili, SHA Sha, et al. Rapid solidification and physical properties of a refractory Mo-Ni alloy under containerless microgravity condition[J]. Scientia Sinica Technologica, 2021, 51(9): 1127-1134 doi: 10.1360/SST-2021-0161
    [11] YAN Pengxu, WANG Weili, YAN Na, et al. Microstructural evolution and mechanical properties of rapidly solidified Ni-Ge alloys[J]. Scientia Sinica Technologica, 2020, 50(8): 1042-1054 doi: 10.1360/SST-2020-0022
    [12] WANG Gong, LIU Yifei, CHENG Tianjin, et al. Application of additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2016, 36(4): 571-576 doi: 10.11728/cjss2016.04.571
    [13] WANG Zhen, LI Jingyang, ZHANG Jianchao, et al. Research on the space application of fused deposition modeling[J]. Aerospace Materials & Technology, 2020, 50(2): 90-93 doi: 10.12044/j.issn.1007-2330.2020.02.017
    [14] ZHAI Yuanyuan, FANG Lei. China completes the first space 3D printing of continuous fiber reinforced composite materials[J]. Journal of Henan Science and Technology, 2020(13): 1 doi: 10.3969/j.issn.1003-5168.2020.13.002
    [15] LI B, JI P F, CHEN B H, et al. The effect of Zr addition on the microstructure evolution and mechanical properties of hot-rolled TiAlNbZr alloy[J]. Materials Science and Engineering:A, 2021, 828: 142114 doi: 10.1016/j.msea.2021.142114
    [16] WANG F, WANG S T, CHEN B H, et al. Effect of Ti addition on the mechanical properties and microstructure of novel Al-rich low-density multi-principal-element alloys[J]. Journal of Alloys and Compounds, 2022, 891: 162028 doi: 10.1016/j.jallcom.2021.162028
    [17] MA W, WANG F, CHEN B H, et al. Thermal compression behavior and microstructural evolution of Ti-30-5-3 alloys in lower α + β region[J]. Materials Letters, 2021, 297: 129876 doi: 10.1016/j.matlet.2021.129876
    [18] JI P F, LIU S G, SHI C B, et al. Synergistic effect of Zr addition and grain refinement on corrosion resistance and pitting corrosion behavior of single α-phase Ti-Zr-based alloys[J]. Journal of Alloys and Compounds, 2022, 896: 163013 doi: 10.1016/j.jallcom.2021.163013
    [19] CHEN R, AN Q, WANG S, et al. Overcoming the strength-ductility trade-off dilemma in TiBw/TC18 composites via network architecture with trace reinforcement[J]. Materials Science and Engineering: A, 2022, 842: 143092 doi: 10.1016/j.msea.2022.143092
    [20] ZHU X J, ZHANG X X, QIAN M F, et al. Enhanced elastocaloric stability in NiTi alloys under shear stress[J]. Materials Science and Engineering: A, 2022, 838: 142787 doi: 10.1016/j.msea.2022.142787
    [21] DING H, CUI X P, WANG Z Q, et al. A new strategy for fabrication of unique heterostructured titanium laminates and visually tracking their synchronous evolution of strain partitions versus microstructure[J]. Journal of Materials Science & Technology, 2022, 107: 70-81
    [22] WANG S, AN Q, ZHANG R, et al. Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures[J]. Materials Science and Engineering: A, 2022, 829: 142176 doi: 10.1016/j.msea.2021.142176
    [23] ZHANG B, ZHANG F M, SABA F, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 859: 157777 doi: 10.1016/j.jallcom.2020.157777
    [24] HUANG Z Y, ZHANG X X, XIAO B, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014 Al composite[J]. Journal of Alloys and Compounds, 2017, 722: 145-157 doi: 10.1016/j.jallcom.2017.06.065
    [25] Institute of Metals, Chinese Academy of Sciences. A number of materials and technologies of the institute of metal materials have been used in the Tianhe core module of the space station[J]. Surface Engineering & Remanufacturing, 2021(S1): 43
    [26] ZHANG D Y, YU H Y, WANG A Z, et al. Ablation behavior and mechanisms of 3D Cf/ZrB2-SiC composite applied in long-term temperature up to 2400℃[J]. Corrosion Science, 2021, 190: 109706 doi: 10.1016/j.corsci.2021.109706
    [27] DING Q, NI D W, NI N, et al. Thermal damage and microstructure evolution mechanisms of Cf/SiBCN composites during plasma ablation[J]. Corrosion Science, 2020, 169: 108621 doi: 10.1016/j.corsci.2020.108621
    [28] RUAN J, YANG J S, DONG S M, et al. Interfacial optimization of SiC nanocomposites reinforced by SiC nanowires with high volume fraction[J]. Journal of the American Ceramic Society, 2019, 102(9): 5033-5037 doi: 10.1111/jace.16513
    [29] PING T, ZHENG Y, LI Z Y, et al. Design and preparation of thermal control coatings with low absorption and emissivity for spacecraft[J]. Manned space Flight, 2020, 26(2): 214-221
    [30] PAN Yating, WEI Qiang, ZHANG Lixian, et al. Rapid preparation and evaluation of 13 X-SiC adsorption coating on cordierite surface by microwave method[J]. Surface Technology, 2021, 50(11): 129-136
    [31] ZHANG Zhen. Study on 5 A Zeolite Material Modified by TiO2 and Its Adsorption Properties for Space Molecular Pollutants[D]. Harbin: Harbin Institute of Technology, 2020
    [32] GONG Xianghua, ZU Lijie, WU Jinzhu, et al. Preparation and adsorption properties of Al2O3@5 A zeolite composites for space molecular contamination[J]. Surface Technology, 2020, 49(12): 14-22
    [33] MA Xuelin. Molecular Dynamics Study on the Irradiation-induced Damage in GaAs[D]. Beijing: Beijing Jiaotong University, 2020
    [34] FU Yulei, YUN Weidong, CAO Zhengli, et al. Numerical simulation on atomic oxygen undercutting of deorbit sail using Monte Carlo method[J]. Space Debris Research, 2020, 20(2): 14-21
    [35] SUI Rong, ZHANG Wenbo, JIANG Wei. Experimental study on synergistic effect of atomic oxygen and ultraviolet irradiation on mechanical properties of nylon materials[J]. Spacecraft Environment Engineering, 2021, 38(2): 171-175
    [36] LU Ping, GAO Hong, LI Yan, et al. Experimental study of space environmental effects on the degradation of mechanical properties of polyurethane coated fabric[J]. Spacecraft Environment Engineering, 2021, 38(2): 183-187
    [37] JIANG D H, WANG D, LIU G, et al. Atomic oxygen adaptability of flexible kapton/Al2O3 composite thin films prepared by ion exchange method[J]. Coatings, 2019, 9(10): 624 doi: 10.3390/coatings9100624
    [38] TONG P Y, WEI Q, HU N, et al. Asynchronous synergistic damage effect of atomic oxygen and space micro debris on Kapton film[J]. Coatings, 2022, 12(2): 179 doi: 10.3390/coatings12020179
    [39] JU Dandan, WANG Xinmin, SUN Chengyue, et al. Mechanical properties of polyimide fibers under the irradiation of space charged particles[J]. Equipment Environmental Engineering, 2020, 17(3): 1-7
    [40] WU Yanping, XU Haiyan, JUN Pengfei, et al. Tribological behavior of phosphate coatings in ground-based simulation environment[J]. Aerospace Shanghai, 2020, 37(3): 45-50,60
    [41] ZHANG Hang, ZHANG Jiaqiang, CUI Qingxin, et al. [J]. Journal of Aerospace Materials and Technology, 201, 51(5): 103-107
    [42] TIAN Hai, FENG Zhanzu, WANG Yi, et al. Effect of charged particle radiation on electrical properties of carbon nanotube paper[J]. Vacuum, 2022, 3: 1-8
    [43] WEI Q, GUO Z, XU J, et al. Atomic oxygen effect of Zr-Al-C coatings on ZrNb alloys used in space environment[J]. Applied Surface Science, 2021, 564: 150420 doi: 10.1016/j.apsusc.2021.150420
    [44] WEI Qiang, BI Xiaoyang, HU Ning. “YuanGuang” science experiment satellite positioning interdisciplinary integration[J]. Science Popularization in University, 2021(1): 13-17
    [45] China establishes first space materials and environment engineering laboratory[J]. Journal of North China University of Technology, 2000(1): 81
    [46] ZHOU Weijuan, ZHOU Haisu. Professor He Shiyu and his team, state key laboratory of materials behavior and evaluation technology for space environment, harbin institute of technology[J]. China Awards for Science and Technology, 2014(175): 77-80
    [47] FANG Xing. Radiation Protection Design of SESRI in Low Energy Range[D]. Lanzhou: Lanzhou University, 2017
    [48] XIAO Fugen. A future trend of the development of miniature space environment simulator[J]. Spacecraft Environment Engineering, 1999(3): 38-43
    [49] JOHNSON R H, MONTIERTH L D, DENNISON J R, et al. Small-scale simulation chamber for space environment survivability testing[J]. IEEE Transactions on Plasma Science, 2013, 41(12): 3453-3458 doi: 10.1109/TPS.2013.2281399
    [50] SONG Lihong, WEI Qiang, BAI Yu, et al. Review on the laser technology application in space environment ground simulation[J]. Optoelectronic Technology, 2013, 33(2): 96-102
    [51] HUANG Jianguo, HAN Jianwei. Mechanism of pulsed laser induced single particle effect[J]. Science in China G: Physics, Mechanics Astronomy, 2004, 34(2): 121-130
    [52] SHEN Zhigang, ZHAO Xiaohu, WANG Xin. Atomic Oxygen Effects and the Ground-Based Simulation Experiments[M]. Beijing: National Defense Industry Press, 2006
    [53] WEI Q, YANG G M, LIU G, et al. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator[J]. Applied Surface Science, 2018, 440: 1083-1090 doi: 10.1016/j.apsusc.2018.01.231
  • 加载中
图(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  24
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2022-07-09

目录

    /

    返回文章
    返回