留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of Materials Science in Space Technology in China (2020–2022)*

WEI Qiang LIU Yue XIA Chaoqun

WEI Qiang, LIU Yue, XIA Chaoqun. Progress of Materials Science in Space Technology in China (2020–2022). Chinese Journal of Space Science, 2022, 42(4): 812-823 doi: 10.11728/cjss2022.04.yg25
Citation: WEI Qiang, LIU Yue, XIA Chaoqun. Progress of Materials Science in Space Technology in China (2020–2022). Chinese Journal of Space Science, 2022, 42(4): 812-823 doi: 10.11728/cjss2022.04.yg25

Progress of Materials Science in Space Technology in China (2020–2022)*

doi: 10.11728/cjss2022.04.yg25
Funds: Supported by the National Natural Science Fund of China (51873146)
More Information
  • Figure  1.  Cross fusion of materials science in space technology

  • [1] HE Shiyu, YANG Dezhuang, JIAO Zhengkuan. Handbook of Space Materials (Vol. 1)-Physical State of Space Environment[M]. Beijing: China Astronautic Publishing House, 2012
    [2] DANIEL H, HENRY G. Spacecraft-Environment Interactions[M]. YANG Xiaoning, HUANG Jianguo, trans. Beijing: China Astronautic Publishing House, 2020
    [3] YANG Xiaoning, YANG Yong. Space Environment Engineering for Spacecraft[M]. Beijing: Beijing Institute of Technology Press, 2018
    [4] HE Shiyu, YANG Dezhuang. Handbook of Space Materials (Vol. 2) - Space Environment and Effect Calculation and Ground Simulation Test[M]. Beijing: China Astronautic Publishing House, 2021
    [5] FEUERBACHER B, HAMACHER H, NAUMANN R J. Materials Sciences in Space: A Contribution to the Scientific Basis of Space Processing[M]. Berlin: Springer, 1986. DOI: 10.1007/978-3-642-82761-7
    [6] PAN Mingxiang, WANG Weihua. Special topic: materials science in space[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(4): 1
    [7] RUAN Ying, HU Liang, YAN Na, et al. Recent advances and future perspectives of space materials science[J]. Scientia Sinica Technologica, 2020, 50(6): 603-649
    [8] XING Yan, WANG Xiangke. Spacecraft Materials[M]. Beijing: Beijing Institute of Technology Press, 2018: 5
    [9] SHEN Zicai, GAO Hong, OUYANG Xiaoping. Connotation and system construction of aerospace material engineering[J]. Aerospace Materials & Technology, 2018, 48(2): 1-6 doi: 10.12044/j.issn.1007-2330.2018.02.001
    [10] ZHAO Xiaolei, WANG Weili, SHA Sha, et al. Rapid solidification and physical properties of a refractory Mo-Ni alloy under containerless microgravity condition[J]. Scientia Sinica Technologica, 2021, 51(9): 1127-1134 doi: 10.1360/SST-2021-0161
    [11] YAN Pengxu, WANG Weili, YAN Na, et al. Microstructural evolution and mechanical properties of rapidly solidified Ni-Ge alloys[J]. Scientia Sinica Technologica, 2020, 50(8): 1042-1054 doi: 10.1360/SST-2020-0022
    [12] WANG Gong, LIU Yifei, CHENG Tianjin, et al. Application of additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2016, 36(4): 571-576 doi: 10.11728/cjss2016.04.571
    [13] WANG Zhen, LI Jingyang, ZHANG Jianchao, et al. Research on the space application of fused deposition modeling[J]. Aerospace Materials & Technology, 2020, 50(2): 90-93 doi: 10.12044/j.issn.1007-2330.2020.02.017
    [14] ZHAI Yuanyuan, FANG Lei. China completes the first space 3D printing of continuous fiber reinforced composite materials[J]. Journal of Henan Science and Technology, 2020(13): 1 doi: 10.3969/j.issn.1003-5168.2020.13.002
    [15] LI B, JI P F, CHEN B H, et al. The effect of Zr addition on the microstructure evolution and mechanical properties of hot-rolled TiAlNbZr alloy[J]. Materials Science and Engineering:A, 2021, 828: 142114 doi: 10.1016/j.msea.2021.142114
    [16] WANG F, WANG S T, CHEN B H, et al. Effect of Ti addition on the mechanical properties and microstructure of novel Al-rich low-density multi-principal-element alloys[J]. Journal of Alloys and Compounds, 2022, 891: 162028 doi: 10.1016/j.jallcom.2021.162028
    [17] MA W, WANG F, CHEN B H, et al. Thermal compression behavior and microstructural evolution of Ti-30-5-3 alloys in lower α + β region[J]. Materials Letters, 2021, 297: 129876 doi: 10.1016/j.matlet.2021.129876
    [18] JI P F, LIU S G, SHI C B, et al. Synergistic effect of Zr addition and grain refinement on corrosion resistance and pitting corrosion behavior of single α-phase Ti-Zr-based alloys[J]. Journal of Alloys and Compounds, 2022, 896: 163013 doi: 10.1016/j.jallcom.2021.163013
    [19] CHEN R, AN Q, WANG S, et al. Overcoming the strength-ductility trade-off dilemma in TiBw/TC18 composites via network architecture with trace reinforcement[J]. Materials Science and Engineering: A, 2022, 842: 143092 doi: 10.1016/j.msea.2022.143092
    [20] ZHU X J, ZHANG X X, QIAN M F, et al. Enhanced elastocaloric stability in NiTi alloys under shear stress[J]. Materials Science and Engineering: A, 2022, 838: 142787 doi: 10.1016/j.msea.2022.142787
    [21] DING H, CUI X P, WANG Z Q, et al. A new strategy for fabrication of unique heterostructured titanium laminates and visually tracking their synchronous evolution of strain partitions versus microstructure[J]. Journal of Materials Science & Technology, 2022, 107: 70-81
    [22] WANG S, AN Q, ZHANG R, et al. Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures[J]. Materials Science and Engineering: A, 2022, 829: 142176 doi: 10.1016/j.msea.2021.142176
    [23] ZHANG B, ZHANG F M, SABA F, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 859: 157777 doi: 10.1016/j.jallcom.2020.157777
    [24] HUANG Z Y, ZHANG X X, XIAO B, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014 Al composite[J]. Journal of Alloys and Compounds, 2017, 722: 145-157 doi: 10.1016/j.jallcom.2017.06.065
    [25] Institute of Metals, Chinese Academy of Sciences. A number of materials and technologies of the institute of metal materials have been used in the Tianhe core module of the space station[J]. Surface Engineering & Remanufacturing, 2021(S1): 43
    [26] ZHANG D Y, YU H Y, WANG A Z, et al. Ablation behavior and mechanisms of 3D Cf/ZrB2-SiC composite applied in long-term temperature up to 2400℃[J]. Corrosion Science, 2021, 190: 109706 doi: 10.1016/j.corsci.2021.109706
    [27] DING Q, NI D W, NI N, et al. Thermal damage and microstructure evolution mechanisms of Cf/SiBCN composites during plasma ablation[J]. Corrosion Science, 2020, 169: 108621 doi: 10.1016/j.corsci.2020.108621
    [28] RUAN J, YANG J S, DONG S M, et al. Interfacial optimization of SiC nanocomposites reinforced by SiC nanowires with high volume fraction[J]. Journal of the American Ceramic Society, 2019, 102(9): 5033-5037 doi: 10.1111/jace.16513
    [29] PING T, ZHENG Y, LI Z Y, et al. Design and preparation of thermal control coatings with low absorption and emissivity for spacecraft[J]. Manned space Flight, 2020, 26(2): 214-221
    [30] PAN Yating, WEI Qiang, ZHANG Lixian, et al. Rapid preparation and evaluation of 13 X-SiC adsorption coating on cordierite surface by microwave method[J]. Surface Technology, 2021, 50(11): 129-136
    [31] ZHANG Zhen. Study on 5 A Zeolite Material Modified by TiO2 and Its Adsorption Properties for Space Molecular Pollutants[D]. Harbin: Harbin Institute of Technology, 2020
    [32] GONG Xianghua, ZU Lijie, WU Jinzhu, et al. Preparation and adsorption properties of Al2O3@5 A zeolite composites for space molecular contamination[J]. Surface Technology, 2020, 49(12): 14-22
    [33] MA Xuelin. Molecular Dynamics Study on the Irradiation-induced Damage in GaAs[D]. Beijing: Beijing Jiaotong University, 2020
    [34] FU Yulei, YUN Weidong, CAO Zhengli, et al. Numerical simulation on atomic oxygen undercutting of deorbit sail using Monte Carlo method[J]. Space Debris Research, 2020, 20(2): 14-21
    [35] SUI Rong, ZHANG Wenbo, JIANG Wei. Experimental study on synergistic effect of atomic oxygen and ultraviolet irradiation on mechanical properties of nylon materials[J]. Spacecraft Environment Engineering, 2021, 38(2): 171-175
    [36] LU Ping, GAO Hong, LI Yan, et al. Experimental study of space environmental effects on the degradation of mechanical properties of polyurethane coated fabric[J]. Spacecraft Environment Engineering, 2021, 38(2): 183-187
    [37] JIANG D H, WANG D, LIU G, et al. Atomic oxygen adaptability of flexible kapton/Al2O3 composite thin films prepared by ion exchange method[J]. Coatings, 2019, 9(10): 624 doi: 10.3390/coatings9100624
    [38] TONG P Y, WEI Q, HU N, et al. Asynchronous synergistic damage effect of atomic oxygen and space micro debris on Kapton film[J]. Coatings, 2022, 12(2): 179 doi: 10.3390/coatings12020179
    [39] JU Dandan, WANG Xinmin, SUN Chengyue, et al. Mechanical properties of polyimide fibers under the irradiation of space charged particles[J]. Equipment Environmental Engineering, 2020, 17(3): 1-7
    [40] WU Yanping, XU Haiyan, JUN Pengfei, et al. Tribological behavior of phosphate coatings in ground-based simulation environment[J]. Aerospace Shanghai, 2020, 37(3): 45-50,60
    [41] ZHANG Hang, ZHANG Jiaqiang, CUI Qingxin, et al. [J]. Journal of Aerospace Materials and Technology, 201, 51(5): 103-107
    [42] TIAN Hai, FENG Zhanzu, WANG Yi, et al. Effect of charged particle radiation on electrical properties of carbon nanotube paper[J]. Vacuum, 2022, 3: 1-8
    [43] WEI Q, GUO Z, XU J, et al. Atomic oxygen effect of Zr-Al-C coatings on ZrNb alloys used in space environment[J]. Applied Surface Science, 2021, 564: 150420 doi: 10.1016/j.apsusc.2021.150420
    [44] WEI Qiang, BI Xiaoyang, HU Ning. “YuanGuang” science experiment satellite positioning interdisciplinary integration[J]. Science Popularization in University, 2021(1): 13-17
    [45] China establishes first space materials and environment engineering laboratory[J]. Journal of North China University of Technology, 2000(1): 81
    [46] ZHOU Weijuan, ZHOU Haisu. Professor He Shiyu and his team, state key laboratory of materials behavior and evaluation technology for space environment, harbin institute of technology[J]. China Awards for Science and Technology, 2014(175): 77-80
    [47] FANG Xing. Radiation Protection Design of SESRI in Low Energy Range[D]. Lanzhou: Lanzhou University, 2017
    [48] XIAO Fugen. A future trend of the development of miniature space environment simulator[J]. Spacecraft Environment Engineering, 1999(3): 38-43
    [49] JOHNSON R H, MONTIERTH L D, DENNISON J R, et al. Small-scale simulation chamber for space environment survivability testing[J]. IEEE Transactions on Plasma Science, 2013, 41(12): 3453-3458 doi: 10.1109/TPS.2013.2281399
    [50] SONG Lihong, WEI Qiang, BAI Yu, et al. Review on the laser technology application in space environment ground simulation[J]. Optoelectronic Technology, 2013, 33(2): 96-102
    [51] HUANG Jianguo, HAN Jianwei. Mechanism of pulsed laser induced single particle effect[J]. Science in China G: Physics, Mechanics Astronomy, 2004, 34(2): 121-130
    [52] SHEN Zhigang, ZHAO Xiaohu, WANG Xin. Atomic Oxygen Effects and the Ground-Based Simulation Experiments[M]. Beijing: National Defense Industry Press, 2006
    [53] WEI Q, YANG G M, LIU G, et al. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator[J]. Applied Surface Science, 2018, 440: 1083-1090 doi: 10.1016/j.apsusc.2018.01.231
  • 加载中
图(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2022-07-09

目录

    /

    返回文章
    返回