留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Overview of the Latest Scientific Achievements of Chang’E-4 Mission of China’s Lunar Exploration Project

CHEN Yuesong TANG Yuhua FAN Yu YAN Jun WANG Chi ZOU Yongliao

CHEN Yuesong, TANG Yuhua, FAN Yu, YAN Jun, WANG Chi, ZOU Yongliao. Overview of the Latest Scientific Achievements of Chang’E-4 Mission of China’s Lunar Exploration Project. Chinese Journal of Space Science, 2022, 42(4): 519-535 doi: 10.11728/cjss2022.04.yg30
Citation: CHEN Yuesong, TANG Yuhua, FAN Yu, YAN Jun, WANG Chi, ZOU Yongliao. Overview of the Latest Scientific Achievements of Chang’E-4 Mission of China’s Lunar Exploration Project. Chinese Journal of Space Science, 2022, 42(4): 519-535 doi: 10.11728/cjss2022.04.yg30

Overview of the Latest Scientific Achievements of Chang’E-4 Mission of China’s Lunar Exploration Project

doi: 10.11728/cjss2022.04.yg30
Funds: Supported by National Key Research and Development Program of China (2020YFE0202100)
More Information
  • Figure  1.  Route map of the Yutu-2 rover

    Figure  2.  Comparison of crater depth-to-diameter ratios between (a) small craters (>0.1 m) at Chang’E-4 landing site; and (b) large craters (>1 km) in the SPA basin; (c) box-and-whisker plot of crater depth-to-diameter ratios

    Figure  3.  SLDEM2015 and topographic profiles of the context of the Chang’E-4 landing site

    Figure  4.  Relative permittivity derived for the top-most (about 4 cm thick) regolith along the path of Yutu-2 in the first 12 lunar days

    Figure  5.  Spectrophotometric measurements of lunar regolith by the Yutu-2 rover

    Figure  6.  Temperature at the Chang’E-4 landing site

    Figure  7.  Images and reflectance spectra of the targeted small crater

    Figure  8.  Centimeter-sized glass globules collected by the Apollo 16 missions (a) (b) and those observed by the Chang’E-4 mission (c) (d). Note that the Apollo 16 mission was landed in the lunar highland, but the landing region was dominated by distal ejecta from the nearside. (e) (f) The two globules are accompanied by similar-sized fragments excavated by fresh impact craters nearby

    Figure  9.  LPR data at 500 MHz. (a) LPR 500-MHz radargram represented in standard seismic colors after applying Dewow, background subtraction, and Spherical and Exponential Compensation (SEC) gain and migration. (b) Tomographic reconstruction of the radar data, where red represents high reflectivity and blue is low reflectivity. (c) Schematic of the stratigraphic sequence highlighting the contacts between units and the relevant thicknesses based on the radargram and the tomographic reconstruction

    Figure  10.  Low-frequency LPR profile along the track of the Yutu-2 rover

    Figure  11.  Temporal evolution of the radiation environment on the Moon as measured by LND on Chang’E-4 during the first and second lunar days after Chang’E-4 landed

    Figure  12.  Velocity dispersion analysis of the SEPs on 6 May 2019 (electrons shown in the left and protons shown in the right panel). Wind and ACE electron data are used to determine the electron release time

    Figure  13.  Radio emission levels on surface of the Moon

  • [1] LIU J J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of Chang’E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1): 4299 doi: 10.1038/s41467-019-12333-z
    [2] CLEP: Yutu-2 lunar rover travels more than 1,000 meters, [EB/OL]. 2022 [2022]. https://mp.weixin.qq.com/s/utRYQ7WbGiQNql1engYJmQ
    [3] CHEN Yuesong, HAN Juanjuan, FAN Yu, ZOU Yongliao, WANG Chi. Overview of the Latest Scientific Results of China’s Lunar Exploration Program. Chin. J. Space Sci. , 2020, 40(5): 626-642
    [4] WANG Chi, XU Lin, ZOU Yongliao. The latest scientific results from Chang’E-4 mission (in Chinese). 2020 Scinece Development Report[M]. Beijing: Science Press, 2021, 29-39
    [5] WANG C, LI L, ZHANG A B, et al. The solar wind and particle radiation environment on the surface of the Moon-new observations from Chang’E-4[J]. Journal of Deep Space Exploration, 2022, 9(3): 239-249
    [6] JIA Y Z, ZOU Y L, PING J S, et al. The scientific objectives and payloads of Chang’E-4 mission[J]. Planetary and Space Science, 2018, 162: 207-215 doi: 10.1016/j.pss.2018.02.011
    [7] WU B, LI Y, LIU W C, et al. Centimeter-resolution topographic modeling and fine-scale analysis of craters and rocks at the Chang’E-4 landing site[J]. Earth and Planetary Science Letters, 2021, 553: 116666 doi: 10.1016/j.jpgl.2020.116666
    [8] FU X H, QIAO L, ZHANG J, et al. The subsurface structure and stratigraphy of the Chang’E-4 landing site: orbital evidence from small craters on the Von Kármán crater floor[J]. Research in Astronomy and Astrophysics, 2020, 20(1): 008 doi: 10.1088/1674-4527/20/1/8
    [9] GOU S, YUE Z Y, DI K C, et al. Mare basalt flooding events surrounding Chang’E-4 landing site as revealed by Zhinyu crater ejecta[J]. Icarus, 2021, 360: 114370 doi: 10.1016/j.icarus.2021.114370
    [10] QIAO L, LING Z C, FU X H, et al. Geological characterization of the Chang’E-4 landing area on the lunar farside[J]. Icarus, 2019, 333: 37-51 doi: 10.1016/j.icarus.2019.05.029
    [11] JIA M N, DI K C, YUE Z Y, et al. Multi-scale morphologic investigation of craters in the Chang’E-4 landing area[J]. Icarus, 2021, 355: 114164 doi: 10.1016/j.icarus.2020.114164
    [12] GOU S, YUE Z Y, DI K C, et al. In situ spectral measurements of space weathering by Chang’E-4 rover[J]. Earth and Planetary Science Letters, 2020, 535: 116117 doi: 10.1016/j.jpgl.2020.116117
    [13] GUO D J, FA W Z, ZENG X J, et al. Geochemistry of the Von Kármán crater floor and thickness of the non-mare ejecta over the Chang’E-4 landing area[J]. Icarus, 2021, 359: 114327 doi: 10.1016/j.icarus.2021.114327
    [14] DING C Y, XIAO Z Y, WU B, et al. Fragments delivered by secondary craters at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2020, 47(7): e2020GL087361
    [15] DI K C, ZHU M H, YUE Z Y, et al. Topographic evolution of Von Kármán crater revealed by the lunar rover Yutu-2[J]. Geophysical Research Letters, 2019, 46(22): 12764-12770 doi: 10.1029/2019GL085252
    [16] XIAO Z Y, DING C Y, XIE M G, et al. Ejecta from the Orientale basin at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2021, 48(3): e2020GL090935
    [17] DING C Y, XIAO Z Y, WU B, et al. Rock fragments in shallow lunar regolith: Constraints by the lunar penetrating radar onboard the Chang’E-4 mission[J]. Journal of Geophysical Research: Planets, 2021, 126(9): e2021JE006917
    [18] LAI J L, XU Y, ZHANG X P, et al. Comparison of dielectric properties and structure of lunar regolith at Chang’E-3 and Chang’E-4 landing sites revealed by ground-penetrating radar[J]. Geophysical Research Letters, 2019, 46(22): 12783-12793 doi: 10.1029/2019GL084458
    [19] LAI J L, CUI F F, XU Y, et al. Dielectric properties of lunar materials at the Chang’E-4 landing site[J]. Remote Sensing, 2021, 13(20): 4056 doi: 10.3390/rs13204056
    [20] LI C L, SU Y, PETTINELLI E, et al. The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar[J]. Science Advances, 2020, 6(9): eaay6898 doi: 10.1126/sciadv.aay6898
    [21] SONG H J, LI C, ZHANG J H, et al. Rock location and property analysis of lunar regolith at Chang’E-4 landing site based on local correlation and semblance analysis[J]. Remote Sensing, 2021, 13(1): 48
    [22] TANG Z C, LIU J J, WANG X, et al. Physical and mechanical characteristics of lunar soil at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089499
    [23] LIN H L, YANG Y Z, LIN Y T, et al. Photometric properties of lunar regolith revealed by the Yutu-2 rover[J]. Astronomy & Astrophysics, 2020, 638: A35
    [24] LIN H L, XU R, YANG W, et al. In situ photometric experiment of lunar regolith with visible and near-infrared imaging spectrometer on board the Yutu-2 lunar rover[J]. Journal of Geophysical Research: Planets, 2020, 125(2): e2019JE006076
    [25] LIN H L, LIN Y T, YANG W, et al. New insight into lunar regolith-forming processes by the lunar rover Yutu-2[J]. Geophysical Research Letters, 2020, 47(14): e2020GL087949
    [26] YANG Y Z, LIN H L, LIU Y, et al. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang’E-4[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087080
    [27] LIN H L, LI S, LIN Y T, et al. Thermal modeling of the lunar regolith at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091687
    [28] HUANG J, XIAO Z Y, XIAO L, et al. Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang’E-4 lunar mission[J]. Geology, 2020, 48(7): 723-727 doi: 10.1130/G47280.1
    [29] LI C L, LIU D W, LIU B, et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 2019, 569(7756): 378-382 doi: 10.1038/s41586-019-1189-0
    [30] HU X Y, MA P, YANG Y Z, et al. Mineral abundances inferred from in situ reflectance measurements of Chang’E-4 landing site in South Pole-Aitken basin[J]. Geophysical Research Letters, 2019, 46(16): 9439-9447 doi: 10.1029/2019GL084531
    [31] LIN H L, HE Z P, YANG W, et al. Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool[J]. National Science Review, 2020, 7(5): 913-920 doi: 10.1093/nsr/nwz183
    [32] CHEN J, LING Z C, QIAO L, et al. Mineralogy of Chang’E-4 landing site: preliminary results of visible and near-infrared imaging spectrometer[J]. Science China Information Sciences, 2020, 63(4): 140903 doi: 10.1007/s11432-019-2768-1
    [33] GOU S, DI K C, YUE Z Y, et al. Lunar deep materials observed by Chang’E-4 rover[J]. Earth and Planetary Science Letters, 2019, 528: 115829 doi: 10.1016/j.jpgl.2019.115829
    [34] GOU S, DI K C, YUE Z Y, et al. Forsteritic olivine and magnesium-rich orthopyroxene materials measured by Chang’E-4 rover[J]. Icarus, 2020, 345: 113776 doi: 10.1016/j.icarus.2020.113776
    [35] MA P, SUN Y X, ZHU M H, et al. A plagioclase-rich rock measured by Yutu-2 Rover in Von Kármán crater on the far side of the Moon[J]. Icarus, 2020, 350: 113901 doi: 10.1016/j.icarus.2020.113901
    [36] ZENG Q H, CHEN S B, ZHANG Y Z, et al. Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission[J]. Scientific Reports, 2021, 11(1): 15435 doi: 10.1038/s41598-021-93694-8
    [37] Ling Z C, Qiao L, Liu C Q, et al. Composition, mineralogy and chronology of mare basalts and non-mare materials in Von Kármán crater: landing site of the Chang’E-4 mission[J]. Planetary and Space Science, 2019, 179: 104741 doi: 10.1016/j.pss.2019.104741
    [38] YANG Y Z, LI S, ZHU M H, et al. Impact remnants rich in carbonaceous chondrites detected on the Moon by the Chang’E-4 rover[J]. Nature Astronomy, 2022, 6(2): 207-213 doi: 10.1038/s41550-021-01530-w
    [39] GOU S, YUE Z Y, DI K C, et al. Impact melt breccia and surrounding regolith measured by Chang’E-4 rover[J]. Earth and Planetary Science Letters, 2020, 544: 116378 doi: 10.1016/j.jpgl.2020.116378
    [40] XIAO Z Y, YAN P, WU B, et al. Translucent glass globules on the Moon[J]. Science Bulletin, 2022, 67(4): 355-358 doi: 10.1016/j.scib.2021.11.004
    [41] DONG Z H, FANG G Y, ZHAO D, et al. Dielectric properties of lunar subsurface materials[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089264
    [42] LAI J L, XU Y, BUGIOLACCHI R, et al. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside[J]. Nature Communications, 2020, 11(1): 3426 doi: 10.1038/s41467-020-17262-w
    [43] LAI J L, XU Y, BUGIOLACCHI R, et al. A complex paleo-surface revealed by the Yutu-2 rover at the lunar farside[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095133
    [44] GIANNAKIS I, ZHOU F, WARREN C, et al. Inferring the shallow layered structure at the Chang’E-4 landing site: a novel interpretation approach using lunar penetrating radar[J]. Geophysical Research Letters, 2021, 48(16): e2021GL092866
    [45] XU L Y, ZHANG X Y, QIAO L, et al. Evaluating the thickness and stratigraphy of ejecta materials at the Chang’E-4 landing site[J]. The Astronomical Journal, 2021, 162(1): 29 doi: 10.3847/1538-3881/abf8b0
    [46] ZHANG J H, ZHOU B, LIN Y T, et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole–Aitken basin[J]. Nature Astronomy, 2021, 5(1): 25-30 doi: 10.1038/s41550-020-1197-x
    [47] ZHANG L, LI J, ZENG Z F, et al. Stratigraphy of the Von Kármán crater based on Chang’E-4 lunar penetrating radar data[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088680
    [48] ZHANG L, XU Y, BUGIOLACCHI R, et al. Rock abundance and evolution of the shallow stratum on Chang’E-4 landing site unveiled by lunar penetrating radar data[J]. Earth and Planetary Science Letters, 2021, 564: 116912 doi: 10.1016/j.jpgl.2021.116912
    [49] ZHOU H Q, FENG X, DONG Z J, et al. Application of denoising CNN for noise suppression and weak signal extraction of lunar penetrating radar data[J]. Remote Sensing, 2021, 13(4): 779 doi: 10.3390/rs13040779
    [50] YUAN Y F, ZHU P M, XIAO L, et al. Intermittent volcanic activity detected in the Von Kármán crater on the farside of the Moon[J]. Earth and Planetary Science Letters, 2021, 569: 117062 doi: 10.1016/j.jpgl.2021.117062
    [51] ZHANG S Y, WIMMER-SCHWEINGRUBER R F, YU J, et al. First measurements of the radiation dose on the lunar surface[J]. Science Advances, 2020, 6(39): eaaz1334 doi: 10.1126/sciadv.aaz1334
    [52] HOU D, ZHANG S, YU J, et al. Removing the dose background from radioactive sources from active dose rate measurements in the Lunar Lander Neutron & Dosimetry (LND) experiment on Chang'E 4[J]. Journal of Instrumentation, 2020, 15: P01032 doi: 10.1088/1748-0221/15/01/P01032
    [53] WIMMER-SCHWEINGRUBER R F, YU J, BÖTTCHER I, et al. The lunar lander neutron and dosimetry (LND) experiment on Chang’E 4[J]. Space Science Reviews, 2020, 216(6): 104 doi: 10.1007/s11214-020-00725-3
    [54] ZHANG S Y, HOU D H, WIMMER-SCHWEINGRUBER R F, et al. Radiation dose of LND on the lunar surface in two years[J]. Chinese Journal of Space Science, 2021, 41(3): 439-444 doi: 10.3724/SP.J.0254-6124.2021.0311
    [55] LUO P W, ZHANG X P, FU S, et al. First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang’E-4 mission[J]. Science Advances, 2022, 8(2): eabk1760 doi: 10.1126/sciadv.abk1760
    [56] XU Z G, GUO J N, WIMMER-SCHWEINGRUBER R F, et al. First solar energetic particles measured on the lunar far-side[J]. The Astrophysical Journal Letters, 2020, 902(2): L30 doi: 10.3847/2041-8213/abbccc
    [57] ZHANG A B, WIESER M, WANG C, et al. Emission of energetic neutral atoms measured on the lunar surface by Chang’E-4[J]. Planetary and Space Science, 2020, 189: 104970 doi: 10.1016/j.pss.2020.104970
    [58] WIESER M, BARABASH S, WANG X D, et al. The advanced small analyzer for neutrals (ASAN) on the Chang’E-4 rover yutu-2[J]. Space Science Reviews, 2020, 216(4): 73 doi: 10.1007/s11214-020-00691-w
    [59] WANG H Z, XIAO C, SHI Q Q, et al. Energetic neutral atom distribution on the lunar surface and its relationship with solar wind conditions[J]. The Astrophysical Journal Letters, 2021, 922(2): L41 doi: 10.3847/2041-8213/ac34f3
    [60] XIE L H, LI L, ZHANG A B, et al. Inside a lunar mini-magnetosphere: first energetic neutral atom measurements on the lunar surface[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093943
    [61] ZHANG Tao, SU Yan. Research of the method for reducing background of very low frequency radio spectrumon Chang’E-4[J]. Astronomical Research & Technology, 2019, 16(3): 312-320
    [62] JIAO Kang, WANG Mingyuan, ZHANG Tongjie, et al. Analysis of the capability of Chang’E-4 low frequency radio spectrometer 2 C data in detecting the dark ages[J]. Astronomical Research & Technology, 2021, 18(4): 472-476
  • 加载中
图(13)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  86
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 网络出版日期:  2022-07-20

目录

    /

    返回文章
    返回