留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
董晓龙, 刘洋, 何杰颖, 张锋, 许健, 赵宇鴳, 王宇, 朱皓天, 王咏梅, 王文煜, 蔡志明. 金星火山与气候探测任务[J]. 空间科学学报, 2022, 42(6): 1047-1059. doi: 10.11728/cjss2022.06.yg33
引用本文: 董晓龙, 刘洋, 何杰颖, 张锋, 许健, 赵宇鴳, 王宇, 朱皓天, 王咏梅, 王文煜, 蔡志明. 金星火山与气候探测任务[J]. 空间科学学报, 2022, 42(6): 1047-1059. doi: 10.11728/cjss2022.06.yg33
DONG Xiaolong, LIU Yang, HE Jieying, ZHANG Feng, XU Jian, ZHAO Yuyan, WANG Yu, ZHU Haotian, WANG Yongmei, WANG Wenyu, CAI Zhiming. Venus Volcano Imaging and Climate Explorer Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1047-1059 doi: 10.11728/cjss2022.06.yg33
Citation: DONG Xiaolong, LIU Yang, HE Jieying, ZHANG Feng, XU Jian, ZHAO Yuyan, WANG Yu, ZHU Haotian, WANG Yongmei, WANG Wenyu, CAI Zhiming. Venus Volcano Imaging and Climate Explorer Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1047-1059 doi: 10.11728/cjss2022.06.yg33

金星火山与气候探测任务

doi: 10.11728/cjss2022.06.yg33
基金项目: 中国科学院空间科学先导专项项目(XDA15072107)和中国科学院国家空间科学中心“攀登计划”项目共同资助
详细信息
    通讯作者:

    董晓龙,E-mail:dongxiaolong@mirslab.cn

    刘洋,E-mail:yangliu@nssc.ac.cn

  • 中图分类号: V476

Venus Volcano Imaging and Climate Explorer Mission

  • 摘要: 金星火山和气候探测任务(Venus Volcano Imaging and Climate Explorer,VOICE)聚焦金星火山与热演化历史、水与板块运动、内部结构和动力学、气候演化和生命信息探索等重大科学问题,提出采用极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR) 、下视与临边结合的微波辐射探测仪(Microwave Radiometric Sounder,MWRS)和紫外–可见–近红外多光谱成像仪(Ultraviolet-Visible-Near Infrared Multispectral Imager,UVN-MSI)等三个先进的有效载荷,在350 km圆轨道上对金星全球表面和大气联合探测。 PolSAR将对金星全球表面进行高分辨多极化雷达成像;MWRS将对金星全球云下大气的热力结构和化学组成,云中可能的宜居环境及与生命相关大气成分进行探测;UVN-MSI则实现大气全貌成像、表面光谱成像和闪电检测。通过多种先进探测载荷和技术手段的结合,VOICE任务将揭示金星构造热演化历史和超温室效应机理,探索其宜居性和生命信息。VOICE任务的实施将实现国际金星研究探索中许多“零”的突破,为理解行星宜居性和太阳系演化提供极为关键的观测支持,对提升中国在国际深空探测与空间科学研究中的地位产生重大影响。

     

  • 图  1  金星火山和气候探测(VOICE)科学卫星任务概念

    Figure  1.  Concept art depicting Venus Volcano Imaging and Climate Exploration (VOICE) Mission

    图  2  有效载荷及其对科学目标的贡献

    Figure  2.  Payloads and their contribution to scientific objectives

    表  1  有效载荷探测功能和配置

    Table  1.   Configuration scheme of VOICE satellite payloads

    有效载荷探测要素探测形式关键技术指标支持的科学研究
    极化SAR
    (PolSAR)
    表面高分辨率成像 多极化成像 分辨率:3~10 m
    幅宽:10 km
    极化:单极化/简缩极化/全极化
    表面构造及演化
    火山活动与作用
    表面与大气相互作用
    微波辐射
    探测仪
    (MWRS)
    云下大气温度
    云下大气成分
    云中大气成分
    大气风场和水气
    下视和临边观测 高度:地表约100 km
    垂直分辨率:3~6 km
    覆盖范围:全
    要素:温度、SO2、PH3、NH3
      H2O等
    大气热力结构与运动
    表面与大气的相互作用
    云中环境与生命信息
    气候特征
    紫外–可见–
    近红外
    多光谱成像仪
    (UVN-MSI)
    表面多光谱成像
    大气全貌成像
    闪电检测
    多光谱和成像探测 表面成像空间分辨率:
     3~10 km
    大气全貌成像空间分辨率:
     <20 km
    表面物质组成和构造演化
    闪电信息
    下载: 导出CSV

    表  2  VOICE任务与国际金星探测任务的有效载荷及性能对比

    Table  2.   Comparison of payloads and their performance between VOICE mission and international Venus exploration missions

    名称年份/类型国家或机构对金星地表形貌探测的
    有效载荷和性能
    对金星大气和气候探测的
    有效载荷和性能
    VOICE 环绕任务 中国  PolSAR:与历史上的和未来
    其他国际金星任务相比,可实现迄今最高分辨率雷达成像;设计分辨率1~10 m
     MWRS:首次实现金星全球大气微波毫米波观测(穿透云层)。星下点空间分辨率7~10 km。独特性:历史上的和未来其他国际金星任务未搭载类似载荷,其轨道器无法实现对云下大气的定量探测。MWRS可实现的观测具体如下。
    ① 可观测PH3,NH3,SO2,H2O,CO等气体分子及大气温度;② 可观测地表温度,测量精度为2 K;③ 可测量大气温度,观测高度0~60 km(下视模式);④ 可测量大气组成,观测高度0~150 km(下视+临边模式)
     UVN-MSI:性能指标与历史上的和未来其他国际金星任务相当。可实现大气全貌成像、表面窗口成像、闪电检测。分辨率:3 km/20 km
    麦哲伦号 1989年/
    环绕任务
    美国  合成孔径雷达:
    最高空间分辨率120~300 m
     无相关载荷
    金星快车 2005年/
    环绕任务
    欧空局  无相关载荷  ① 高分辨红外傅里叶光谱仪(PFS),测量金星大气和表面温度;② 紫外和红外摄谱仪(SPICAV/SOIR),测定金星的化学成分;③ 紫外–可见光–近红外成像摄谱仪(VIRTIS),探测云层和雾霭特性;④ 空间等离子体和高能原子分析器(ASPERA),研究太阳风相互作用;⑤ 金星监测摄像机(VMC),可实现近红外、紫外、可见光的广角多频道摄像。这些载荷仅能开展对云上大气的探测
    拂晓号 2010年/
    环绕任务
    日本  无相关载荷  主体为5个成像相机,覆盖紫外至中红外波段,仅能开展对云上大气的探测
    真相号 计划2030年/
    环绕任务
    美国  金星干涉合成孔径雷达(VISAR):图像空间分辨率为30 m;数字高程模型精度为水平250 m,高度5 m  金星发射率测绘仪(VEM):使用六个大气
    窗口光谱波段绘制金星表面发射率。仅能开展云上大气的探测
    达芬奇+ 计划2030年/
    下落式探测器
    美国  金星下降成像仪(VenDI):在下降位置对镶嵌地块区域进行高对比度成像  金星分析实验室套件(VAL):在进入大气和下落过程中原位探测大气结构和组成。包含三个相关仪器:① 金星质谱仪(VMS);② 金星可调谐激光光谱仪(VTLS);③ 金星大气结构调查套件(VASI)
    展望号 计划2032年/
    环绕任务
    欧空局  金星合成孔径雷达(VenSAR),空间分辨率为30 m;金星光谱套件(VenSpec)中的VenSpec-M通道,对地表岩石成分进行探测;地下雷达探测仪(SRS)  金星光谱套件(VenSpec)中VenSpec-H and VenSpec-U通道,分别对大气成分开展高分辨率探测和对含硫物质、云上层紫外吸收剂开展探测
    下载: 导出CSV
  • [1] STROM R G, SCHABER G G, DAWSON D D. The global resurfacing of Venus[J]. Journal of Geophysical Research: Planets, 1994, 99(E5): 10899-10926 doi: 10.1029/94JE00388
    [2] SVEDHEM H, TITOV D V, TAYLOR F W, et al. Venus as a more Earth-like planet[J]. Nature, 2007, 450(7170): 629-632 doi: 10.1038/nature06432
    [3] PICCIONI G, DROSSART P, SANCHEZ-LAVEGA A, et al. South-polar features on Venus similar to those near the north pole[J]. Nature, 2007, 450(7170): 637-640 doi: 10.1038/nature06209
    [4] BERTAUX J-L, VANDAELE A-C, KORABLEV O, et al. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO[J]. Nature, 2007, 450(7170): 646-649 doi: 10.1038/nature05974
    [5] LIMAYE S S, MOGUL R, BAINES K H, et al. Way Venus, an astrobiology target[J]. Astrobiology, 2021, 21(10): 1163-1185
    [6] GARVIN J B, GETTY S A, ARNEY G N, et al. Revealing the mysteries of Venus: the DAVINCI mission[J]. The Planetary Science Journal, 2022, 3(5): 117 doi: 10.3847/PSJ/ac63c2
    [7] 赵宇鴳, 刘建忠, 邹永廖, 等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006

    ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006
    [8] CAMPBELL D B, HEAD J W, SENSKE D A, et al. Styles of volcanism on Venus: New Arecibo high resolution radar data[J]. Science, 1989, 246(4928): 373-377 doi: 10.1126/science.246.4928.373
    [9] TAYLOR F W. The Scientific Exploration of Venus [M]. Cambridge: Cambridge University Press, 2014
    [10] DROSSART P, MONTMESSIN F. The legacy of Venus express: highlights from the first European planetary mission to Venus[J]. The Astronomy and Astrophysics Review, 2015, 23(1): 1-23 doi: 10.1007/s00159-014-0081-z
    [11] NAKAMURA M, TITOV D, MCGOULDRICK K, et al. Akatsuki at Venus: the first year of scientific operation[J]. Earth, Planets and Space, 2018, 70(1): 1-3 doi: 10.1186/s40623-017-0766-4
    [12] HORINOUCHI T, HAYASHI Y Y, WATANABE S, et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere[J]. Science, 2020, 368(6489): 405-409 doi: 10.1126/science.aaz4439
    [13] CUI J, GALAND M, COATES A J, et al. Suprathermal electron spectra in the Venus ionosphere [J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4). DOI. org/10.1029/2010 JA016153
    [14] WEI Y, FRAENZ M, DUBININ E, et al. A teardrop-shaped ionosphere at Venus in tenuous solar wind[J]. Planetary and Space Science, 2012, 73(1): 254-261 doi: 10.1016/j.pss.2012.08.024
    [15] ZHANG T, BAUMJOHANN W, RUSSELL C, et al. A statistical study of the low‐altitude ionospheric magnetic fields over the north pole of Venus[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6218-6229 doi: 10.1002/2015JA021153
    [16] WEI D, YANG A, HUANG J. The gravity field and crustal thickness of Venus[J]. Science China Earth Sciences, 2014, 57(9): 2025-2035 doi: 10.1007/s11430-014-4824-5
    [17] XIAO C, LI F, YAN J G, et al. Inversion of Venus internal structure based on geodetic data[J]. Research in Astronomy and Astrophysics, 2020, 20(8): 127 doi: 10.1088/1674-4527/20/8/127
    [18] XU M, WANG Z. A new attitude pointing design for Venus spacecraft[J]. Aerospace Science and Technology, 2014, 39: 325-330 doi: 10.1016/j.ast.2014.09.015
    [19] ZHENG W, HSU H, ZHONG M, et al. Future dedicated Venus-SGG flight mission: accuracy assessment and performance analysis[J]. Advances in Space Research, 2016, 57(1): 459-576 doi: 10.1016/j.asr.2015.08.036
    [20] SMREKAR S E, HENSLEY S, DYAR M, et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a proposed discovery mission[J]. 2020, 48: 216
    [21] GHAIL R C, HALL D, MASON P J, et al. VenSAR on EnVision: taking earth observation radar to Venus[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 365-376 doi: 10.1016/j.jag.2017.02.008
    [22] FILIBERTO J, TRANG D, TREIMAN A H, et al. Present-day volcanism on Venus as evidenced from weathering rates of olivine[J]. Science Advances, 2020, 6(1): eaax7445 doi: 10.1126/sciadv.aax7445
    [23] GüLCHER A J, GERYA T V, MONTéSI L G, et al. Corona structures driven by plume– lithosphere interactions and evidence for ongoing plume activity on Venus[J]. Nature Geoscience, 2020, 13(8): 547-54 doi: 10.1038/s41561-020-0606-1
    [24] SHALYGIN E V, MARKIEWICZ W J, BASILEVSKY A T, et al. Active volcanism on Venus in the Ganiki Chasma rift zone[J]. Geophysical Research Letters, 2015, 42(12): 4762 doi: 10.1002/2015GL064088
    [25] MARCQ E, AMINE I, DUQUESNOY M, et al. Evidence for SO2 latitudinal variations below the clouds of Venus[J]. Astronomy & Astrophysics, 2021, 648: L8
    [26] BéZARD B, DE BERGH C. Composition of the atmosphere of Venus below the clouds[J]. Journal of Geophysical Research: Planets, 2007, 112(E4). DOI. org/10.1029/2006JE002794
    [27] ANDO H, TAKAGI M, SUGIMOTO N, et al. Venusian cloud distribution simulated by a general circulation model[J]. Journal of Geophysical Research: Planets, 2020, 125(7): e2019JE006208
    [28] TITOV D V, IGNATIEV N I, MCGOULDRICK K, et al. Clouds and hazes of Venus[J]. Space Science Reviews, 2018, 214(8): 1-61
    [29] LIMAYE S S, GRASSI D, MAHIEUX A, et al. Venus atmospheric thermal structure and radiative balance[J]. Space Science Reviews, 2018, 214(5): 1-71
    [30] TAYLOR F W, SVEDHEM H, HEAD J W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet[J]. Space Science Reviews, 2018, 214(1): 1-36 doi: 10.1007/s11214-017-0435-8
    [31] VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability[J]. Icarus, 2017, 295: 16-33 doi: 10.1016/j.icarus.2017.05.003
    [32] VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability[J]. Icarus, 2017, 295: 1-15 doi: 10.1016/j.icarus.2017.05.001
    [33] HAUS R, KAPPEL D, TELLMANN S, et al. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere[J]. Icarus, 2016, 272: 178-205 doi: 10.1016/j.icarus.2016.02.048
    [34] BAINS W, PETKOWSKI J J, RIMMER P B, et al. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies[J]. Proceedings of the National Academy of Sciences, 2021, 118(52): e2110889118 doi: 10.1073/pnas.2110889118
    [35] GREAVES J S, RICHARDS A, BAINS W, et al. Phosphine gas in the cloud decks of Venus[J]. Nature Astronomy, 2021, 5(7): 655-64 doi: 10.1038/s41550-020-1174-4
    [36] PETTENGILL G H, FORD P G, JOHNSON W T, et al. Magellan: Radar performance and data products[J]. Science, 1991, 252(5003): 260-265 doi: 10.1126/science.252.5003.260
    [37] PERALTA J, LEE Y J, MCGOULDRICK K, et al. Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission[J]. Icarus, 2017, 288: 235-239 doi: 10.1016/j.icarus.2017.01.027
    [38] TITOV D V, BULLOCK M A, CRISP D, et al. Radiation in the atmosphere of Venus[J]. Geophysical Monograph-American Geophysical Union, 2007, 176: 121
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  27
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 修回日期:  2022-11-25
  • 网络出版日期:  2022-12-01

目录

    /

    返回文章
    返回