留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载人空间探索环境中固体材料可燃特性研究进展与态势

王双峰 吴传嘉

王双峰, 吴传嘉. 载人空间探索环境中固体材料可燃特性研究进展与态势[J]. 空间科学学报. doi: 10.11728/cjss2023.02.2022-0049
引用本文: 王双峰, 吴传嘉. 载人空间探索环境中固体材料可燃特性研究进展与态势[J]. 空间科学学报. doi: 10.11728/cjss2023.02.2022-0049
WANG Shuangfeng, WU Chuanjia. Recent Progress and Development Trend of Solid Combustion Research for Manned Space Exploration (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.2022-0049
Citation: WANG Shuangfeng, WU Chuanjia. Recent Progress and Development Trend of Solid Combustion Research for Manned Space Exploration (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.2022-0049

载人空间探索环境中固体材料可燃特性研究进展与态势

doi: 10.11728/cjss2023.02.2022-0049
基金项目: 国家重点研发计划项目资助(2021YFA0716203)
详细信息
    作者简介:

    王双峰:E-mail:sfwang@imech.ac.cn

  • 中图分类号: TK16

Recent Progress and Development Trend of Solid Combustion Research for Manned Space Exploration

  • 摘要: 掌握固体材料在空间特定使用环境中的可燃特性,是保障载人航天器防火安全的重要前提,相关需求构成了微重力燃烧研究的主要推动力之一。近年来,固体材料燃烧及相应的载人航天器防火问题得到各航天大国的持续关注,新一轮研究热潮正在形成,研究工作表现出新的特点和发展态势。本文综述了约10年来微重力固体材料燃烧的研究进展和最新成果,对该研究方向的发展趋势进行分析,对未来研究提出建议,为后续进一步发展提供参考。

     

  • 图  1  SAME实验装置外观与结构

    Figure  1.  Photograph and schematic of the SAME hardware

    图  2  烟颗粒电镜照片。(a)未老化的Kapton,574℃,(b)老化的Kapton,574℃,(c)未老化的灯芯,265℃,(d)未老化的Pyrell,242℃,(e)未老化的Teflon,514℃,(f)未老化的硅树脂,380℃

    Figure  2.  TEM images showing morphology of smoke particles. (a) Unaged Kapton, 574℃, (b) Aged Kapton, 574℃, (c) Unaged lamp wick, 265℃, (d) Unaged Pyrell, 242℃, (e) Unaged Teflon, 514℃, and (f) Unaged silicone, 380℃

    图  3  BASS实验装置。(a)小型流动通道,(b)试样、试样架和点火器

    Figure  3.  Experimental setup of BASS. (a) Small flow duct, and (b) Fuel sample, sample holder, and igniter

    图  4  常压21%氧浓度环境中两种厚度平板火焰传播速度随气流速度的变化

    Figure  4.  Experimental spread rate vs. flow velocity for two different fuel thicknesses at about 21% oxygen level and 1 atm

    图  5  低速流动中球形PMMA火焰的增长与熄灭(流动方向向上)

    Figure  5.  Flame growth and decay around a small PMMA sphere in low speed forced flow. The flow direction is from bottom to top

    图  6  柱状材料表面逆向火焰传播过程

    Figure  6.  Photo sequence of opposed fame spread over cylindrical solids

    图  7  BRE燃烧器照片和示意

    Figure  7.  BRE burner image and drawing

    图  8  火焰辐射分数随燃料质量流率(a)和火焰高度(b)的变化

    Figure  8.  Flame radiant fraction with mass flux (a) and flame height (b)

    图  9  Saffire I~III实验中的试样布置

    Figure  9.  Sample configurations in the Saffire I~III

    图  10  Saffire I实验中的大尺寸试样火焰传播。(a)材料热解区域的时间变化,(b)合成的俯视火焰图像,(c)点火后不同时刻的俯视火焰图像

    Figure  10.  Flame spread over a large sample in the Saffire I experiment. (a) Pyrolysis tracking, (b) A composite top-view flame image, and (c) Top-view flame images at selected times after ignition

    图  11  逆向流动中阻燃材料的可燃极限

    Figure  11.  Flammability maps of flame retardant materials in opposed flow

    图  12  连续火焰向小火焰转变过程的俯视图像

    Figure  12.  Top-view flame image sequence illustrating the transition from continuous flame to flamelet

    图  13  连续火焰区、小火焰区、熄灭区组成的可燃极限与火焰稳定图谱

    Figure  13.  A flammability map and stability diagram showing the distribution of the continuous flame zone, the flamelet zone, and the extinguished zone

    图  14  实践十号导线绝缘层过载燃烧实验系统

    Figure  14.  Setup of the SJ-10 experimental system for overloaded wire insulation combustion

    图  15  不同电流下导线绝缘层烟的析出

    Figure  15.  Smoke emissions of wire insulations with different currents

    图  16  微重力燃烧实验中PE液滴直径平方随时间的变化

    Figure  16.  Time evolution of measured d-square for the microgravity combustion of PE droplets

    表  1  NASA在国际空间站的固体材料燃烧实验项目

    Table  1.   NASA’s solid combustion projects on the International Space Station

    实验名称使用的实验
    设备/装置
    空间实验实施时间主要研究人员和机构说明
    烟雾测量实验SAME(Smoke and Aerosol Measurement Experiment) MSG/SAME 2007-2010 David UrbanNASA
    格林研究中心
    包括SAME和SAME-R
    固体材料燃烧和抑制BASS(Burning and Suppression of Solids) MSG/改造后的SPICE装置 2012-2014 Paul FerkulNASA
    格林研究中心
    包括BASS, BASS-II和BASS-M;SPICE装置先期用于MSG中气体同流火焰烟点实验(Smoke Point in Coflow Experiment)
    燃烧速率模拟器BRE(Burning Rate Emulator) CIR/ACME/BRE燃烧模拟器 2019-2021 James Quintiere
    马里兰大学
    微重力前沿燃烧实验ACME(Advanced Combustion via Microgravity Experiments)项目5个课题之一
    固体燃料着火和熄灭SoFIE(Solid Fuel Ignition and Extinction) CIR/SoFIE 预计2022-2025 James T’ien凯斯西储大学;Carlos Fernandez-Pello加州大学伯克利;Fletcher Miller圣迭戈州立大学;S. Bhattacharjee圣迭戈州立大学;Sandra OlsonNASA格林研究中心 包括5个研究课题
    下载: 导出CSV
  • [1] LAUTENBERGER C, TORERO J, FERNANDEZ-PELLO C. Understanding material flammability[M]//APTE V. Flammability Testing of Materials Used in Construction, Transport and Mining. Boca Raton: CRC Press, 2006: 1-21
    [2] QUINTIERE J. A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus[J]. Fire and Materials, 1981, 5(2): 52-60 doi: 10.1002/fam.810050204
    [3] TORERO J L. Scaling-up fire[J]. Proceedings of the Combustion Institute, 2013, 34(1): 99-124 doi: 10.1016/j.proci.2012.09.007
    [4] CORDOVA J L, WALTHER D C, TORERO J L, et al. Oxidizer flow effects on the flammability of solid combustibles[J]. Combustion Science and Technology, 2001, 164(1): 253-278 doi: 10.1080/00102200108952172
    [5] RICH D, LAUTENBERGER C, TORERO J L, et al. Mass flux of combustible solids at piloted ignition[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2653-2660 doi: 10.1016/j.proci.2006.08.055
    [6] FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO C, et al. Mass flux at ignition in reduced pressure environments[J]. Combustion and Flame, 2011, 158(7): 1301-1306 doi: 10.1016/j.combustflame.2010.11.013
    [7] MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible[J]. Combustion and Flame, 2010, 157(9): 1753-1759 doi: 10.1016/j.combustflame.2010.02.022
    [8] MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. Piloted ignition delay of PMMA in space exploration atmospheres[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2453-2459 doi: 10.1016/j.proci.2008.05.076
    [9] FRIEDMAN R, ROSS H D. Combustion technology and fire safety for humancrew space missions[M]//ROSS H D. Microgravity Combustion: Fire in Free Fall. New York: Academic Press, 2001: 525-562
    [10] LANGE K E, PERKA A T, DUFFIELD B E, et al. Bounding the spacecraft atmosphere design space for future exploration missions[R]. Houston: NASA, 2005
    [11] CAMPBELL P D. Recommendations for exploration spacecraft internal atmospheres: the final report of the NASA exploration atmospheres working group[R]. Houston: NASA, 2010
    [12] 刘伟波, 刘朝霞, 陈金盾, 等. 载人探月航天器大气压力制度选择[J]. 载人航天, 2016, 22(6): 687-693 doi: 10.3969/j.issn.1674-5825.2016.06.004

    LIU Weibo, LIU Zhaoxia, CHEN Jindun, et al. Selection of spacecraft atmospheric pressure regime for manned lunar exploration mission[J]. Manned Spaceflight, 2016, 22(6): 687-693 doi: 10.3969/j.issn.1674-5825.2016.06.004
    [13] T'IEN J S, SHIH H Y, JIANG C B, et al. Mechanisms of flame spread and smolder wave propagation[M]//ROSS H D. Microgravity Combustion: Fire in Free Fall. San Diego: Academic Press, 2001: 299-418
    [14] 张夏. 载人航天器火灾安全研究进展[J]. 力学进展, 2005, 35(1): 100-115 doi: 10.3321/j.issn:1000-0992.2005.01.010

    ZHANG Xia. Progress in fire safety research for manned spacecraft[J]. Advances in Mechanics, 2005, 35(1): 100-115 doi: 10.3321/j.issn:1000-0992.2005.01.010
    [15] FUJITA O. Solid combustion research in microgravity as a basis of fire safety in space[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2487-2502 doi: 10.1016/j.proci.2014.08.010
    [16] 薛源, 徐国鑫, 胡松林, 等. 国际空间站微重力燃烧项目规划及进展[J]. 载人航天, 2020, 26(2): 252-260 doi: 10.3969/j.issn.1674-5825.2020.02.017

    XUE Yuan, XU Guoxin, HU Songlin, et al. Planning and progress of microgravity combustion science on the International Space Station[J]. Manned Spaceflight, 2020, 26(2): 252-260 doi: 10.3969/j.issn.1674-5825.2020.02.017
    [17] 张璐, 刘迎春. 空间站微重力燃烧研究现状与展望[J]. 载人航天, 2015, 21(6): 603-610 doi: 10.3969/j.issn.1674-5825.2015.06.012

    ZHANG Lu, LIU Yingchun. Research status and outlook of microgravity combustion in space station[J]. Manned Spaceflight, 2015, 21(6): 603-610 doi: 10.3969/j.issn.1674-5825.2015.06.012
    [18] NASA. Smoke aerosol measurement experiment (SAME)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/msg/same/#space-applications
    [19] MEYER M E, URBAN D L, MULHOLLAND G W, et al. Evaluation of spacecraft smoke detector performance in the low-gravity environment[J]. Fire Safety Journal, 2018, 98: 74-81 doi: 10.1016/j.firesaf.2018.04.004
    [20] MULHOLLAND G W, MEYER M, URBAN D L, et al. Pyrolysis smoke generated under low-gravity conditions[J]. Aerosol Science and Technology, 2015, 49(5): 310-321 doi: 10.1080/02786826.2015.1025125
    [21] URBAN D L, RUFF G A, MULHOLLAND G W, et al. Measurement of smoke particle size under low-gravity conditions[J]. SAE International Journal of Aerospace, 2008, 1(1): 317-324 doi: 10.4271/2008-01-2089
    [22] URBAN D, RUFF G, SHEREDY W, et al. Properties of smoke from overheated materials in low-gravity[C]//Proceedings of the 47 th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009: 1-7
    [23] MEYER M E, MULHOLLAND G W, BRYG V, et al. Smoke characterization and feasibility of the moment method for spacecraft fire detection[J]. Aerosol Science and Technology, 2015, 49(5): 299-309 doi: 10.1080/02786826.2015.1025124
    [24] URBAN D, RUFF G, BROOKER J, et al. Spacecraft fire detection: smoke properties and transport in low-gravity[C]//Proceedings of the 46 th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2008: 1-9
    [25] ZHAO X Y, LIAO Y T T, JOHNSTON M C, et al. Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2971-2978 doi: 10.1016/j.proci.2016.06.028
    [26] BHATTACHARJEE S, SIMSEK A, MILLER F, et al. Radiative, thermal, and kinetic regimes of opposed-flow flame spread: a comparison between experiment and theory[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2963-2969 doi: 10.1016/j.proci.2016.06.025
    [27] BHATTACHARJEE S, LAUE M, CARMIGNANI L, et al. Opposed-flow flame spread: a comparison of microgravity and normal gravity experiments to establish the thermal regime[J]. Fire Safety Journal, 2016, 79: 111-118 doi: 10.1016/j.firesaf.2015.11.011
    [28] BHATTACHARJEE S, SIMSEK A, OLSON S, et al. The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: a comparison of experimental, computational, and theoretical results[J]. Combustion and Flame, 2016, 163: 472-477 doi: 10.1016/j.combustflame.2015.10.023
    [29] CARMIGNANI L, BHATTACHARJEE S, OLSON S L, et al. Boundary layer effect on opposed-flow flame spread and flame length over thin polymethyl-methacrylate in microgravity[J]. Combustion Science and Technology, 2018, 190(3): 535-549 doi: 10.1080/00102202.2017.1404587
    [30] ENDO M, T’IEN J S, FERKUL P V, et al. Flame growth around a spherical solid fuel in low speed forced flow in microgravity[J]. Fire Technology, 2020, 56(1): 5-32 doi: 10.1007/s10694-019-00848-2
    [31] OLSON S L, FERKUL P V, MARCUM J W. High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1555-1562 doi: 10.1016/j.proci.2018.05.080
    [32] MARCUM J W, FERKUL P V, OLSON S L. PMMA rod stagnation region flame blowoff limits at various radii, oxygen concentrations, and mixed stretch rates[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4001-4008 doi: 10.1016/j.proci.2018.05.081
    [33] LINK S, HUANG X Y, FERNANDEZ-PELLO C, et al. The effect of gravity on flame spread over PMMA cylinders[J]. Scientific Reports, 2018, 8(1): 120 doi: 10.1038/s41598-017-18398-4
    [34] HUANG X Y, LINK S, RODRIGUEZ A, et al. Transition from opposed flame spread to fuel regression and blow off: effect of flow, atmosphere, and microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4117-4126 doi: 10.1016/j.proci.2018.06.022
    [35] NASA. Advanced combustion via microgravity experiments (ACME)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/cir/acme
    [36] DEHGHANI P, SUNDERLAND P B, QUINTIERE J G, et al. Burning in microgravity: experimental results and analysis[J]. Combustion and Flame, 2021, 228: 315-330 doi: 10.1016/j.combustflame.2021.01.035
    [37] LUNDSTRÖM F V, SUNDERLAND P B, QUINTIERE J G, et al. Study of ignition and extinction of small-scale fires in experiments with an emulating gas burner[J]. Fire Safety Journal, 2017, 87: 18-24 doi: 10.1016/j.firesaf.2016.11.003
    [38] AUTH E, QUINTIERE J G, SUNDERLAND P B. Emulation of condensed fuel flames with gaseous fuels supplied through a porous copper calorimeter[J]. Fire and Materials, 2020, 44(7): 935-942 doi: 10.1002/fam.2896
    [39] ZHANG Y, KIM M, SUNDERLAND P B, et al. A burner to emulate condensed phase fuels[J]. Experimental Thermal and Fluid Science, 2016, 73: 87-93 doi: 10.1016/j.expthermflusci.2015.09.025
    [40] MARKAN A, SUNDERLAND P B, QUINTIERE J G, et al. A burning rate emulator (BRE) for study of condensed fuel burning in microgravity[J]. Combustion and Flame, 2018, 192: 272-282 doi: 10.1016/j.combustflame.2018.01.044
    [41] ZHANG Y, KIM M, GUO H Q, et al. Emulation of condensed fuel flames with gases in microgravity[J]. Combustion and Flame, 2015, 162(10): 3449-3455 doi: 10.1016/j.combustflame.2015.05.005
    [42] MARKAN A, SUNDERLAND P B, QUINTIERE J G, et al. Measuring heat flux to a porous burner in microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4137-4144 doi: 10.1016/j.proci.2018.05.006
    [43] SNEGIREV A, KUZNETSOV E, MARKUS E, et al. Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4815-4823 doi: 10.1016/j.proci.2020.06.110
    [44] KUZNETSOV E, SNEGIREV A, MARKUS E. Radiative extinction of diffusion flame in microgravity[C]//Proceedings of the 9 th International Seminar on Fire and Explosion Hazards. Saint Petersburg: St. Petersburg Polytechnic University, 2019: 214-224
    [45] DEHGHANI P, QUINTIERE J G. Theoretical analysis and predictions of burning in microgravity using a burning emulator[J]. Combustion and Flame, 2021, 233: 111572 doi: 10.1016/j.combustflame.2021.111572
    [46] MARKAN A, BAUM H R, SUNDERLAND P B, et al. Transient ellipsoidal combustion model for a porous burner in microgravity[J]. Combustion and Flame, 2020, 212: 93-106 doi: 10.1016/j.combustflame.2019.09.030
    [47] NASA. Solid fuel ignition and extinction[EB/OL]. [2022-12-23]. https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=2060
    [48] NASA. Fighting fire with fire: new space station experiments study flames in space[EB/OL]. [2022-12-23]. https://www.nasa.gov/feature/glenn/2022/fighting-fire-with-fire-new-space-station-experiments-study-flames-in-space
    [49] NASA. Spacecraft fire safety (Saffire)[EB/OL]. [2022-12-23]. https://www.nasa.gov/saffire
    [50] NASA. Spacecraft fire safety demonstration (Saffire)[EB/OL]. [2022-12-23]. https://techport.nasa.gov/view/13543
    [51] URBAN D L, FERKUL P, OLSON S, et al. Flame spread: effects of microgravity and scale[J]. Combustion and Flame, 2019, 199: 168-182 doi: 10.1016/j.combustflame.2018.10.012
    [52] JOMAAS G, TORERO J L, EIGENBROD C, et al. Fire safety in space–beyond flammability testing of small samples[J]. Acta Astronautica, 2015, 109: 208-216 doi: 10.1016/j.actaastro.2014.11.025
    [53] FERKUL P, OLSON S, URBAN D, et al. Results of large-scale spacecraft flammability tests[C]//Proceedings of the 47 th International Conference on Environmental Systems. Charleston: ICES, 2017: 1-10
    [54] BROYAN JR J L, SHAW L, MCKINLEY M, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview[C]//Proceedings of the 50 th International Conference on Environmental Systems. Lisbon: ICES, 2021: 1-10
    [55] CASTEEL M, GRAF J. Development of a carbon dioxide removal bed and a combustion products removal bed for Saffire[C]//Proceedings of the 49 th International Conference on Environmental Systems. Massachusetts: ICES, 2019: 1-10
    [56] FRADET M, BRIGGS R, BENDIG R. The combustion product monitor instrument for the spacecraft fire safety demonstration project[C]//Proceedings of the 49 th International Conference on Environmental Systems. Massachusetts: ICES, 2019: 1-10
    [57] WANG X L, ZHOU H, ARNOTT W P, et al. Evaluation of gas and particle sensors for detecting spacecraft-relevant fire emissions[J]. Fire Safety Journal, 2020, 113: 102977 doi: 10.1016/j.firesaf.2020.102977
    [58] LI C Y, LIAO Y T T, T'IEN J S, et al. Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity–model versus experiment[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4163-4171 doi: 10.1016/j.proci.2018.05.168
    [59] LI C Y, LIAO Y T T. Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4775-4784 doi: 10.1016/j.proci.2020.05.011
    [60] OLSON S L, URBAN D L, RUFF G A, et al. Concurrent flame spread over two-sided thick PMMA slabs in microgravity[J]. Fire Technology, 2020, 56(1): 49-69 doi: 10.1007/s10694-019-00863-3
    [61] ROJAS-ALVA U, MØLLER-POULSEN F, MAN S L, et al. Flame spread behaviour of polydimethylsiloxane (PDMS) membranes in 1 g and µg environments[J]. Combustion and Flame, 2022, 240: 112009 doi: 10.1016/j.combustflame.2022.112009
    [62] THOMSEN M, FERNANDEZ-PELLO C, URBAN D L, et al. On simulating concurrent flame spread in reduced gravity by reducing ambient pressure[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3793-3800 doi: 10.1016/j.proci.2018.05.004
    [63] THOMSEN M, FERNANDEZ-PELLO C, RUFF G A, et al. Buoyancy effects on concurrent flame spread over thick PMMA[J]. Combustion and Flame, 2019, 199: 279-291 doi: 10.1016/j.combustflame.2018.10.016
    [64] NASA. Flammability limits at reduced-g experiment (FLARE)[EB/OL]. [2022-12-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/cir/flammability-limits-at-reduced-g-experiment-flare
    [65] TAKAHASHI S, MARUTA K. Prediction of limiting oxygen concentration of thin materials in microgravity[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16(1): 28-34 doi: 10.2322/tastj.16.28
    [66] GUIBAUD A, CITERNE J M, CONSALVI J L, et al. Experimental evaluation of flame radiative feedback: methodology and application to opposed flame spread over coated wires in microgravity[J]. Fire Technology, 2020, 56: 185-207 doi: 10.1007/s10694-019-00853-5
    [67] KOBAYASHI Y, TERASHIMA K, BIN BORHAN M A F, et al. Opposed flame spread over polyethylene under variable flow velocity and oxygen concentration in microgravity[J]. Fire Technology, 2020, 56(1): 113-130 doi: 10.1007/s10694-019-00862-4
    [68] MIZUTANI K, MIYAMOTO K, HASHIMOTO N, et al. Limiting oxygen concentration trend of ETFE-insulated wires under microgravity[J]. International Journal of Microgravity Science and Application, 2018, 35(1): 350104
    [69] CITERNE J M, DUTILLEUL H, KIZAWA K, et al. Fire safety in space–investigating flame spread interaction over wires[J]. Acta Astronautica, 2016, 126: 500-509 doi: 10.1016/j.actaastro.2015.12.021
    [70] NAGACHI M, MITSUI F, CITERNE J M, et al. Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4155-4162 doi: 10.1016/j.proci.2018.05.007
    [71] TAKAHASHI S, TERASHIMA K, BIN BORHAN M A F, et al. Relationship between blow-off behavior and limiting oxygen concentration in microgravity environments of flame retardant materials[J]. Fire Technology, 2020, 56(1): 169-183 doi: 10.1007/s10694-019-00880-2
    [72] TAKAHASHI S, BIN BORHAN M A F, TERASHIMA K, et al. Flammability limit of thin flame retardant materials in microgravity environments[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4257-4265 doi: 10.1016/j.proci.2018.06.102
    [73] TAKAHASHI S, EBISAWA T, BHATTACHARJEE S, et al. Simplified model for predicting difference between flammability limits of a thin material in normal gravity and microgravity environments[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2535-2543 doi: 10.1016/j.proci.2014.07.017
    [74] TAKAHASHI S, OIWA R, TOKORO M, et al. Flammability limits of flat materials with moderate thickness in microgravity[J]. Fire Technology, 2021, 57(5): 2387-2406 doi: 10.1007/s10694-021-01121-1
    [75] MARUTA K, TSUBOI K, TAKAHASHI S. Limiting oxygen concentration of flame resistant material in microgravity environment[J]. International Journal of Microgravity Science and Application, 2017, 34(3): 340304
    [76] NAGACHI M, MITSUI F, CITERNE J M, et al. Effect of ignition condition on the extinction limit for opposed flame spread over electrical wires in microgravity[J]. Fire Technology, 2020, 56(1): 149-168 doi: 10.1007/s10694-019-00860-6
    [77] KONNO Y, KOBAYASHI Y, FERNANDEZ-PELLO C, et al. Opposed-flow flame spread and extinction in electric wires: the effects of gravity, external radiant heat flux, and wire characteristics on wire flammability[J]. Fire Technology, 2020, 56(1): 131-148 doi: 10.1007/s10694-019-00935-4
    [78] KONNO Y, LI Y T, CITERNE J M, et al. Experimental study on downward/opposed flame spread and extinction over electric wires in partial gravity environments[J]. Proceedings of the Combustion Institute, doi: 10.1016/j.proci.2022.07.002.
    [79] NAGACHI M, CITERNE J M, DUTILLEUL H, et al. Effect of ambient pressure on the extinction limit for opposed flame spread over an electrical wire in microgravity[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4767-4774 doi: 10.1016/j.proci.2020.05.005
    [80] KOBAYASHI Y, HUANG X Y, NAKAYA S, et al. Flame spread over horizontal and vertical wires: the role of dripping and core[J]. Fire Safety Journal, 2017, 91: 112-122 doi: 10.1016/j.firesaf.2017.03.047
    [81] MIYAMOTO K, HUANG X Y, HASHIMOTO N, et al. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation[J]. Fire Safety Journal, 2016, 86: 32-40 doi: 10.1016/j.firesaf.2016.09.004
    [82] NAKAMURA Y, KIZAWA K, MIZUGUCHI S, et al. Experimental study on near-limiting burning behavior of thermoplastic materials with various thicknesses under candle-like burning configuration[J]. Fire Technology, 2016, 52(4): 1107-1131 doi: 10.1007/s10694-016-0567-5
    [83] KONNO Y, HASHIMOTO N, FUJITA O. Downward flame spreading over electric wire under various oxygen concentrations[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3817-3824 doi: 10.1016/j.proci.2018.05.074
    [84] KOBAYASHI Y, NAKAYA S, TSUE M, et al. Flame spread over polyethylene-insulated copper and stainless-steel wires at high pressure[J]. Fire Safety Journal, 2021, 120: 103062 doi: 10.1016/j.firesaf.2020.103062
    [85] 赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034

    ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
    [86] WANG S F, ZHANG X. Microgravity smoldering combustion of flexible polyurethane foam with central ignition[J]. Microgravity Science and Technology, 2008, 20(2): 99-105 doi: 10.1007/s12217-008-9014-7
    [87] KONG W J, WANG B R, ZHANG W K, et al. Study on prefire phenomena of wire insulation at microgravity[J]. Microgravity Science and Technology, 2008, 20(2): 107-113 doi: 10.1007/s12217-008-9041-4
    [88] ZHU F, LU Z B, WANG S F, et al. Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows[J]. Combustion and Flame, 2019, 205: 55-67 doi: 10.1016/j.combustflame.2019.03.040
    [89] WU C J, HUANG X Y, WANG S F, et al. Opposed flame spread over cylindrical PMMA under oxygen-enriched microgravity environment[J]. Fire Technology, 2020, 56(1): 71-89 doi: 10.1007/s10694-019-00896-8
    [90] ZHU F, LU Z B, WANG S F. Flame spread and extinction over a thick solid fuel in low-velocity opposed and concurrent flows[J]. Microgravity Science and Technology, 2016, 28(2): 87-94 doi: 10.1007/s12217-015-9475-4
    [91] ZHU F, WANG S F, LU Z B. A comparative study of near-limit flame spread over a thick solid in space- and ground-based experiments[J]. Microgravity Science and Technology, 2018, 30(6): 943-949 doi: 10.1007/s12217-018-9655-0
    [92] XUE S, KONG W J. Smoke emission and temperature characteristics of the long-term overloaded wire in space[J]. Journal of Fire Sciences, 2019, 37(2): 99-116 doi: 10.1177/0734904118821665
    [93] ZHUANG H H, KONG W J. Smoke emission and distribution characteristics of overloaded wire insulations under microgravity[J]. Microgravity Science and Technology, 2022, 34(5): 81 doi: 10.1007/s12217-022-10007-y
    [94] WANG K, XIA W, WANG B R, et al. Study on fire initiation of wire insulation by a narrow channel at low pressure[J]. Microgravity Science and Technology, 2016, 28(2): 155-163 doi: 10.1007/s12217-016-9494-9
    [95] GUAN J F, FANG J, XUE Y, et al. Morphology and concentration of smoke from fluorinated ethylene propylene wire insulation in microgravity under forced airflow[J]. Journal of Hazardous Materials, 2016, 320: 602-611 doi: 10.1016/j.jhazmat.2016.07.056
    [96] HU L H, DELICHATSIOS M A, LI J, et al. Experimental study on diffusive solid combustion behavior during transition from normal- to reduced-gravity[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2035-2043
    [97] WANG S F, HU J, XIAO Y, et al. Opposed-flow flame spread over solid fuels in microgravity: the effect of confined spaces[J]. Microgravity Science and Technology, 2015, 27(5): 329-336 doi: 10.1007/s12217-015-9419-z
    [98] WANG S F, ZHU F. Flame spread in low-speed forced flows: ground- and space-based experiments[M]//HU W R, KANG Q. Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer, 2019: 237-262
    [99] WU C J, SUN P Y, WANG X Z, et al. Flame extinction of spherical PMMA in microgravity: effect of fuel diameter and conduction[J]. Microgravity Science and Technology, 2020, 32(6): 1065-1075 doi: 10.1007/s12217-020-09829-5
    [100] SUN P Y, WU C J, ZHU F, et al. Microgravity combustion of polyethylene droplet in drop tower[J]. Combustion and Flame, 2020, 222: 18-26 doi: 10.1016/j.combustflame.2020.08.032
    [101] ZHU F, HUANG X Y, WANG S F. Flame spread over polyethylene film: effects of gravity and fuel inclination[J]. Microgravity Science and Technology, 2022, 34(3): 26 doi: 10.1007/s12217-022-09945-4
    [102] 张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072

    ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China Space Station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
    [103] 张晓武, 郑会龙, 王琨, 等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41(2): 301-309 doi: 10.11728/cjss2021.02.301

    ZHANG Xiaowu, ZHENG Huilong, WANG Kun, et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309 doi: 10.11728/cjss2021.02.301
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  38
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 录用日期:  2022-12-30
  • 修回日期:  2022-12-15
  • 网络出版日期:  2022-12-27

目录

    /

    返回文章
    返回