留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种不规则小行星附近周期轨道全局搜索策略

张世栋 李明涛

张世栋, 李明涛. 一种不规则小行星附近周期轨道全局搜索策略[J]. 空间科学学报. doi: 10.11728/cjss2023.02.220106002
引用本文: 张世栋, 李明涛. 一种不规则小行星附近周期轨道全局搜索策略[J]. 空间科学学报. doi: 10.11728/cjss2023.02.220106002
ZHANG Shidong, LI Mingtao. Global Search Strategy for Periodic Orbit Near an Irregular Asteroid (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.220106002
Citation: ZHANG Shidong, LI Mingtao. Global Search Strategy for Periodic Orbit Near an Irregular Asteroid (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.220106002

一种不规则小行星附近周期轨道全局搜索策略

doi: 10.11728/cjss2023.02.220106002
基金项目: 国防科工局空间碎片与小行星专项课题资助(kjsp2020020101)
详细信息
    作者简介:

    张世栋:E-mail:zhangshidong19@mails.ucas.ac.cn

    通讯作者:

    李明涛,E-mail:limingtao@nssc.ac.cn

Global Search Strategy for Periodic Orbit Near an Irregular Asteroid

  • 摘要: 研究不规则小行星附近的自然周期轨道,有助于更好地认识小行星附近的动力学特性。周期轨道的搜索过程需要频繁地进行轨道递推,其中绝大多数的计算时间消耗在不规则小行星附近的引力加速度计算中。为提高加速度计算效率,提出一种不规则小行星引力加速度快速估计方法;在此基础上,通过参数空间内随机化粗略搜索获得周期轨道的初值猜想;利用遗传算法在初值猜想附近区间进行精细搜索,找到周期轨道的初值。通过对不规则小行星433 Eros附近周期轨道的搜索,对其附近不同形状的周期轨道进行了分类,分析周期轨道在小行星附近的分布规律。

     

  • 图  1  检验点和小行星质心与伪中心位置关系

    Figure  1.  Test point, asteroid centroid and pseudocenter location relationship

    图  2  标准多面体模型(a)和快速估计方法采样模型(b)

    Figure  2.  Standard polyhedral model (a) and fast estimation method sampling model (b)

    图  3  20 km(a)和30 km(b)高度快速估计方法的相对误差分布

    Figure  3.  Relative error distribution of fast estimation method for height at 20 km (a) and 30 km (b)

    图  4  小行星质心固连坐标系

    Figure  4.  Fixed coordinate system of the asteroid center

    图  5  平衡点位置分布

    Figure  5.  Distribution of e libration points

    图  6  周期轨道搜索流程

    Figure  6.  Flow chart of periodic orbit search

    图  7  类8字形轨道各方向视图

    Figure  7.  All directions view of similar to 8 shape orbit

    图  8  倾斜双翘曲面轨道各方向视图

    Figure  8.  All directions view of oblique double warpage orbit

    图  9  近赤道面类圆轨道各方向视图

    Figure  9.  All directions view of near-equatorial quasi-circular orbit

    图  10  赤道投影心形轨道各方向视图

    Figure  10.  All directions view of Equatorial projection cardioid orbit

    图  11  绕小行星大双圈轨道各方向视图

    Figure  11.  All directions view of the large double circle orbit around the asteroid

    图  12  近赤道面三角平衡点单弯折轨道各方向视图

    Figure  12.  All directions view of the near-equatorial plane single-bent orbit at the triangular libration point

    图  13  三角平衡点双弯折轨道各方向视图

    Figure  13.  All directions view of the double-bent orbit at the triangular libration point

    图  14  L3点附近类8字形周期轨道分布

    Figure  14.  Distribution of similar to 8 shape orbits near L3 point

    图  15  L4点附近类8字形周期轨道分布

    Figure  15.  Distribution of similar to 8 shape orbits near L4 point

    图  16  L1点(a)和L2点(b)附近类8字形轨道分布

    Figure  16.  Distribution of similar to 8 shape orbits near L1 (a) and L2 (b) points

    图  17  倾斜双翘曲面轨道在小行星附近的分布

    Figure  17.  Distribution of oblique double warpage orbits near asteroids

    图  18  近赤道面类圆形轨道在小行星赤道面附近的分布

    Figure  18.  Distribution of near-equatorial quasi-circular orbits near the asteroid's equatorial plane

    图  19  三角平衡点附近赤道投影心形轨道的分布

    Figure  19.  Distribution of Equatorial projection cardioid orbits near triangular equilibrium point

    图  20  绕小行星大双圈轨道在小行星周围的分布

    Figure  20.  Distribution of large double-circle orbits around the asteroid

    图  21  近赤道面三角平衡点单弯折轨道在小行星赤道面附近的分布

    Figure  21.  Distribution of near-equatorial plane single - bent orbits near the asteroid's equatorial plane

    图  22  三角平衡点双弯折轨道的分布

    Figure  22.  Distribution of the double - bent orbit at triangular translational points

    表  1  不同引力加速度计算方法的计算速度

    Table  1.   Calculation velocity of different gravitational acceleration calculation methods

    引力加速度计算方法1000次运算总用时/s相对计算效率(以标准多面体模型的结果作为1)
    多面体法(49152面片标准多面体模型)691
    多面体法(3000面片简化多面体模型)6.910
    10×10阶次球谐函数模型0.64107.8
    6×6阶次球谐函数模型0.28246.4
    快速估计方法0.075920
    下载: 导出CSV
  • [1] YEOMANS D. Small bodies of the solar system[J]. Nature, 2000, 404(6780): 829-832 doi: 10.1038/35009193
    [2] SCHEERES D J. Close proximity dynamics and control about asteroids[C]//2014 American Control Conference. Portland: IEEE, 2014: 1584-1598
    [3] FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778): 1330-1334 doi: 10.1126/science.1125841
    [4] SCHEERES D J. Satellite dynamics about asteroids: computing Poincaré maps for the general case[M]//SIMÓ C. Hamiltonian Systems with Three or More Degrees of Freedom. Dordrecht: Springer, 1999: 554-557
    [5] 李俊峰, 曾祥远. 不规则小行星引力场内的飞行动力学[J]. 力学进展, 2017, 47(1): 429-451 doi: 10.6052/1000-0992-16-042

    LI Junfeng, ZENG Xiangyuan. Flight dynamics in the gravitational fields of irregular asteroids[J]. Advances in Mechanics, 2017, 47(1): 429-451 doi: 10.6052/1000-0992-16-042
    [6] SCHEERES D J. Dynamics about uniformly rotating triaxial ellipsoids: applications to asteroids[J]. Icarus, 1994, 110(2): 225-238 doi: 10.1006/icar.1994.1118
    [7] RIAGUAS A, ELIPE A, LARA M. Periodic orbits around a massive straight segment[J]. International Astronomical Union Colloquium, 1999, 172: 169-178 doi: 10.1017/S0252921100072523
    [8] LIU X, BAOYIN H, MA X R. Periodic orbits in the gravity field of a fixed homogeneous cube[J]. Astrophysics and Space Science, 2011, 334(2): 357-364 doi: 10.1007/s10509-011-0732-8
    [9] ZENG X Y, JIANG F H, LI J F, et al. Study on the connection between the rotating mass dipole and natural elongated bodies[J]. Astrophysics and Space Science, 2015, 356(1): 29-42 doi: 10.1007/s10509-014-2187-1
    [10] HU W D, SCHEERES D J. Periodic orbits in rotating second degree and order gravity fields[J]. Chinese Journal of Astronomy and Astrophysics, 2008, 8(1): 108-118 doi: 10.1088/1009-9271/8/1/12
    [11] HOBSON E W. The Theory of Spherical and Ellipsoidal Harmonics[M]. Cambridge: University Press, 1931
    [12] WERNER R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3): 253-278 doi: 10.1007/BF00692875
    [13] SCHEERES D J, OSTRO S J, HUDSON R S, et al. Orbits close to asteroid 4769 Castalia[J]. Icarus, 1996, 121(1): 67-87 doi: 10.1006/icar.1996.0072
    [14] SCHEERES D J, OSTRO S J, HUDSON R S, et al. Dynamics of orbits close to asteroid 4179 Toutatis[J]. Icarus, 1998, 132(1): 53-79 doi: 10.1006/icar.1997.5870
    [15] YU Y, BAOYIN H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra[J]. The Astronomical Journal, 2012, 143(3): 62 doi: 10.1088/0004-6256/143/3/62
    [16] 倪彦硕. 小天体附近周期轨道及其熵研究[D]. 北京: 清华大学, 2018

    NI Yanshuo. Study on Periodic Orbits Near Small Bodies and Entropy Analysis[D]. Beijing: Tsinghua University, 2018
    [17] SHANG H B, WU X Y, REN Y, et al. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 550-568 doi: 10.1016/j.cnsns.2017.01.021
    [18] KARYDIS D, VOYATZIS G, TSIGANIS K. A continuation approach for computing periodic orbits around irregular-shaped asteroids. An application to 433 Eros[J]. Advances in Space Research, 2021, 68(11): 4418-4433 doi: 10.1016/j.asr.2021.08.036
    [19] 于洋. 小天体引力场中的轨道动力学研究[D]. 北京: 清华大学, 2014

    YU Yang. Research on Orbital Dynamics in the Gravitational Field of Small Bodies[D]. Beijing: Tsinghua University, 2014
    [20] 姜宇. 不规则多小天体系统动力学[D]. 北京: 清华大学, 2016

    JIANG Yu. Dynamics in the System of Multiple Irregular Celestial Bodies[D]. Beijing: Tsinghua University, 2016
    [21] SHI Y, WANG Y, XU S J. Global search for periodic orbits in the irregular gravity field of a binary asteroid system[J]. Acta Astronautica, 2019, 163: 11-23 doi: 10.1016/j.actaastro.2018.10.014
    [22] SHI Y, WANG Y, XU S J. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130(4): 32 doi: 10.1007/s10569-018-9827-7
    [23] HUJSAK R S. Gravity acceleration approximation functions[J]. Advances in the Astronautical Sciences, 1996, 93(1): 335-349
    [24] SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23 rd ACM National Conference. New York: ACM, 1968: 517-524
    [25] GASKELL R W. Gaskell Eros shape model V1.0[J]. NASA Planetary Data System, 2008: NEAR-A-MSI-5-EROSSHAPE-V1. 0.
    [26] 吴太泷, 王悦. 小天体环的轨道动力学[J]. 北京航空航天大学学报, 2022, 48(7): 1287-1296

    WU Tailong, WANG Yue. Orbital dynamics of rings of small bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1287-1296
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 录用日期:  2022-03-18
  • 修回日期:  2023-02-13
  • 网络出版日期:  2023-04-19

目录

    /

    返回文章
    返回