Calibration of the Medium Energy Proton Detector of FY-3E
-
摘要: 风云三号E星搭载的中能质子探测器实现了风云三号系列卫星首次对辐射带中能质子进行多方向的测量。中能质子探测器实现了对九个方向的测量能量范围为0.03~5 MeV的中能质子能谱的测量。为确定中能质子探测器的实际性能,在仪器交付前,利用中国科学院国家空间科学中心的中高能电子加速器,对中能质子探测器的能量分辨率,相对响应效率曲线、不同方向探头测量一致性以及抗电子污染能力进行了标定。文中介绍了仪器的标定场所、标定内容,并对标定的结果做了分析。其结果显示,仪器的能量分辨率为6.50%@310 keV,各测量一致性偏差优于1.51%,电子在仪器内产生污染计数的概率低于1%。该结果为中能质子探测器在轨运行时数据的分析处理提供了重要的参考依据。Abstract: FY-3E is the first satellite among the FY-3 series that has observed protons with medium energy in multiple directions. The medium energy proton detector can measure the energy spectrum of protons with the energy range of 0.03-5 MeV in nine directions. In order to determine the actual performance of the medium energy proton detector, before the instrument delivered, the energy resolution, relative response efficiency curve, measurement consistency of probes in different directions, and anti-electron pollution ability of the medium energy proton detector were calibrated using the medium and high-energy electron accelerator of the National Space Science Center of the Chinese Academy of Sciences. This paper introduces the calibration site and contents of the instrument, and analyzes the calibration results. The results show that the energy resolution of the instrument is 6.50% @ 310 keV, the consistency deviation of each measurement is better than 1.51%, and the probability of electronic pollution counting in the instrument is less than 1%.The results provide an important reference for the analysis and processing of the data of the intermediate-energy proton detector in orbit.
-
Key words:
- Sun-synchronous orbit /
- FY-3E /
- Medium energy proton detector /
- Calibration /
- Energy resolution
-
图 3 中能质子探测器探测方向分布(xyz为卫星本体坐标系, –z为朝天向,+z为对地方向,+y和–y为垂直轨道面,+x为前进方向,–x为后退方向)
Figure 3. Distribution of the medium energy proton detector detection direction (xyz are the satellite body coordinate system, where –z is the upward direction, +z is the direction to Earth, +y and –y is the vertical orbital plane, +x is the forward direction, and –x is the backward direction
表 1 国际上辐射带中能质子探测载荷
Table 1. Medium energy proton detector of radiation belts in the international
卫星 载荷 质子范围/MeV 探测手段 POLAR IPS 0.02~1.5 小孔成像+磁偏转 POES MEPED 0.03~6.9 半导体望远镜+磁偏转 GOES-N,O,P MAGPD 0.08~0.8 半导体望远镜+磁偏转 GOES-R MPS-HI 0.08~12 半导体望远镜+磁偏转 表 2 FY-3E中能质子探测器的能档划分
Table 2. Energy bin division of the medium energy proton detector of FY-3E
能档 能量 / keV P1 30~48 P2 48~80 P3 80~120 P4 120~170 P5 170~240 P6 240~350 P7 240~350 P8 350~500 P9 500~800 P10 800~1500 P11 1500~3000 P12 3000~5000 表 3 每组硅半导体传感器特性参数
Table 3. Characteristic parameters of each group of silicon semiconductor sensors
传感器 厚度/μm 直径/μm 传感器死层/nm 第一片 300 8 150(100 nm铝电极+50 nm注入层) 第二片 300 8 150(100 nm铝电极+50 nm注入层) 表 4 各方向垂直入射时通量测量的一致性
Table 4. Consistency of flux measurements at normal incidence in all directions
能量/keV 方向14 方向15 方向18 200 0.01% 1.50% 1.51% -
[1] 中国科学院空间科学与应用研究中心. 宇航空间环境手册[M]. 北京: 中国科学技术出版社, 2000Space Science and Application Research Center, Chinese Academy of Sciences. Aerospace Space Environment Manual[M]. Beijing: China Science and Technology Press, 2000 [2] 都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996DU Heng, YE Zonghai. Space Environment Manual for Low-orbit Spacecraft[M]. Beijing: National Defense Industry Press, 1996 [3] BLAKE J B, FENNELL J F, FRIESEN L M, et al. CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR[J]. Space Science Reviews, 1995, 71(1): 531-562 [4] YANDO K, MILLAN R M, GREEN J C, et al. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument[J]. Journal of Geophysical Research, 2011, 116(A10): A10231 [5] RODRIGUEZ J V, DENTON M H, HENDERSON M G. On-orbit calibration of geostationary electron and proton flux observations for augmentation of an existing empirical radiation model[J]. Journal of Space Weather and Space Climate, 2020, 10: 28 doi: 10.1051/swsc/2020031 [6] KRESS B T, RODRIGUEZ J V, ONSAGER T G. The GOES-R space environment in situ suite (SEISS): measurement of energetic particles in geospace[M]//GOODMAN S J, SCHMIT T J, DANIELS J, et al. The GOES-R Series. Amsterdam: Elsevier, 2020: 243-250 [7] ASIKAINEN T, MURSULA K. Recalibration of the long-term NOAA/MEPED energetic proton measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(2/3): 335-347 [8] WISSING J M, BORNEBUSCH J P, KALLENRODE M B. Variation of energetic particle precipitation with local magnetic time[J]. Advances in Space Research, 2008, 41(8): 1274-1278 doi: 10.1016/j.asr.2007.05.063 [9] SØRAAS F, AARSNES K, OKSAVIK K, et al. Evidence for particle injection as the cause of Dst reduction during HILDCAA events[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(2): 177-186 doi: 10.1016/j.jastp.2003.05.001 [10] LEMAIRE J F, HEYNDERICKX D, BAKER D N. Radiation Belts: Models and Standards[M]. Washington: American Geophysical Union, 1996: 79-91 [11] 李肖, 张珅毅, 张伟杰. 反符合杯测量技术在空间中的应用[J]. 核电子学与探测技术, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010LI Xiao, ZHANG Shenyi, ZHANG Weijie. The application of anti-coincidence detective cup technology in space[J]. Nuclear Electronics & Detection Technology, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010 [12] ROLF P. Developments and Numerical Simulations for the Electron-Proton-Telescope Onboard Solar Orbiter[D]. Kiel: Kiel University, 2012 [13] 侯东辉, 张珅毅, 张效信, 等. 空间高能电子探测器准直仪的设计研究[J]. 真空科学与技术学报, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13HOU Donghui, ZHANG Shenyi, ZHANG Xiaoxin, et al. Design optimization of novel collimator for detector of space high energy electron: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13 [14] ZHANG S Y, ZHANG X G, WANG C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite[J]. Science China Earth Sciences, 2014, 57(10): 2558-2566 doi: 10.1007/s11430-014-4853-0 -