留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风云三号E星中能质子探测器标定

郝梦坛 张珅毅 侯东辉 沈国红 张焕新 苏波 白超平 孙莹 周平 冀文涛

郝梦坛, 张珅毅, 侯东辉, 沈国红, 张焕新, 苏波, 白超平, 孙莹, 周平, 冀文涛. 风云三号E星中能质子探测器标定[J]. 空间科学学报. doi: 10.11728/cjss2023.02.220329033
引用本文: 郝梦坛, 张珅毅, 侯东辉, 沈国红, 张焕新, 苏波, 白超平, 孙莹, 周平, 冀文涛. 风云三号E星中能质子探测器标定[J]. 空间科学学报. doi: 10.11728/cjss2023.02.220329033
HAO Mengtan, ZHANG Shenyi, HOU Donghui, SHEN Guohong, ZHANG Huanxin, SU Bo, BAI Chaoping, SUN Ying, ZHOU Ping, JI Wentao. Calibration of the Medium Energy Proton Detector of FY-3E (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.220329033
Citation: HAO Mengtan, ZHANG Shenyi, HOU Donghui, SHEN Guohong, ZHANG Huanxin, SU Bo, BAI Chaoping, SUN Ying, ZHOU Ping, JI Wentao. Calibration of the Medium Energy Proton Detector of FY-3E (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2023.02.220329033

风云三号E星中能质子探测器标定

doi: 10.11728/cjss2023.02.220329033
基金项目: 中国科学院国家空间科学中心“攀登计划”和科工局基金项目(D020104)共同资助
详细信息
    作者简介:

    侯东辉:E-mail:houdonghui@nssc.ac.cn

  • 中图分类号: V447

Calibration of the Medium Energy Proton Detector of FY-3E

  • 摘要: 风云三号E星搭载的中能质子探测器实现了风云三号系列卫星首次对辐射带中能质子进行多方向的测量。中能质子探测器实现了对九个方向的测量能量范围为0.03~5 MeV的中能质子能谱的测量。为确定中能质子探测器的实际性能,在仪器交付前,利用中国科学院国家空间科学中心的中高能电子加速器,对中能质子探测器的能量分辨率,相对响应效率曲线、不同方向探头测量一致性以及抗电子污染能力进行了标定。文中介绍了仪器的标定场所、标定内容,并对标定的结果做了分析。其结果显示,仪器的能量分辨率为6.50%@310 keV,各测量一致性偏差优于1.51%,电子在仪器内产生污染计数的概率低于1%。该结果为中能质子探测器在轨运行时数据的分析处理提供了重要的参考依据。

     

  • 图  1  风云三号E星中能质子探测器部件1

    Figure  1.  component 1 of the medium energy proton detector of FY-3E

    图  2  中能质子探头截面

    Figure  2.  Schematic diagram of the cross section of the medium energy proton probe

    图  3  中能质子探测器探测方向分布(xyz为卫星本体坐标系, –z为朝天向,+z为对地方向,+y和–y为垂直轨道面,+x为前进方向,–x为后退方向)

    Figure  3.  Distribution of the medium energy proton detector detection direction (xyz are the satellite body coordinate system, where –z is the upward direction, +z is the direction to Earth, +y and –y is the vertical orbital plane, +x is the forward direction, and –x is the backward direction

    图  4  仪器标定试验使用的加速器

    Figure  4.  Accelerator used for instrument calibration test.

    图  5  FY-3E星中能质子探测器方向9传感器的单能电子沉积能谱及其高斯拟合结果

    Figure  5.  Single-energy electron deposition energy spectrum and its Gaussian fitting results of the sensor in direction 9 of the medium energy proton detector of FY-3E

    图  6  不同能量电子在方向1产生的沉积谱

    Figure  6.  Deposition spectra of electrons with different energies in direction 1

    图  7  风云三号E星中能质子探测器方向1传感器相对响应效率

    Figure  7.  Relative response efficiency curve of sensor in direction 1 of the medium energy proton detector of FY-3E

    图  8  测量一致性定标设备连接

    Figure  8.  Connection of equipment for measuring conformance calibration

    图  9  方向14、方向15以及方向18响应计数随转台转动时间的变化

    Figure  9.  Changes in response counts for direction 14, direction 15, and direction 18 as turntable rotation time

    图  10  不同能量及角度下电子在方向14的磁偏转及反符合能力

    Figure  10.  Magnetic deflection and anti-coincidence of electrons in direction 14 at different energies and angles

    图  11  方向14抗电子污染能力

    Figure  11.  Probe resistance to electronic contamination in direction 14

    表  1  国际上辐射带中能质子探测载荷

    Table  1.   Medium energy proton detector of radiation belts in the international

    卫星载荷质子范围/MeV探测手段
    POLARIPS0.02~1.5小孔成像+磁偏转
    POESMEPED0.03~6.9半导体望远镜+磁偏转
    GOES-N,O,PMAGPD0.08~0.8半导体望远镜+磁偏转
    GOES-RMPS-HI0.08~12半导体望远镜+磁偏转
    下载: 导出CSV

    表  2  FY-3E中能质子探测器的能档划分

    Table  2.   Energy bin division of the medium energy proton detector of FY-3E

    能档能量 / keV
    P130~48
    P248~80
    P380~120
    P4120~170
    P5170~240
    P6240~350
    P7240~350
    P8350~500
    P9500~800
    P10800~1500
    P111500~3000
    P123000~5000
    下载: 导出CSV

    表  3  每组硅半导体传感器特性参数

    Table  3.   Characteristic parameters of each group of silicon semiconductor sensors

    传感器厚度/μm直径/μm传感器死层/nm
    第一片3008150(100 nm铝电极+50 nm注入层)
    第二片3008150(100 nm铝电极+50 nm注入层)
    下载: 导出CSV

    表  4  各方向垂直入射时通量测量的一致性

    Table  4.   Consistency of flux measurements at normal incidence in all directions

    能量/keV方向14方向15方向18
    2000.01%1.50%1.51%
    下载: 导出CSV
  • [1] 中国科学院空间科学与应用研究中心. 宇航空间环境手册[M]. 北京: 中国科学技术出版社, 2000

    Space Science and Application Research Center, Chinese Academy of Sciences. Aerospace Space Environment Manual[M]. Beijing: China Science and Technology Press, 2000
    [2] 都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996

    DU Heng, YE Zonghai. Space Environment Manual for Low-orbit Spacecraft[M]. Beijing: National Defense Industry Press, 1996
    [3] BLAKE J B, FENNELL J F, FRIESEN L M, et al. CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR[J]. Space Science Reviews, 1995, 71(1): 531-562
    [4] YANDO K, MILLAN R M, GREEN J C, et al. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument[J]. Journal of Geophysical Research, 2011, 116(A10): A10231
    [5] RODRIGUEZ J V, DENTON M H, HENDERSON M G. On-orbit calibration of geostationary electron and proton flux observations for augmentation of an existing empirical radiation model[J]. Journal of Space Weather and Space Climate, 2020, 10: 28 doi: 10.1051/swsc/2020031
    [6] KRESS B T, RODRIGUEZ J V, ONSAGER T G. The GOES-R space environment in situ suite (SEISS): measurement of energetic particles in geospace[M]//GOODMAN S J, SCHMIT T J, DANIELS J, et al. The GOES-R Series. Amsterdam: Elsevier, 2020: 243-250
    [7] ASIKAINEN T, MURSULA K. Recalibration of the long-term NOAA/MEPED energetic proton measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(2/3): 335-347
    [8] WISSING J M, BORNEBUSCH J P, KALLENRODE M B. Variation of energetic particle precipitation with local magnetic time[J]. Advances in Space Research, 2008, 41(8): 1274-1278 doi: 10.1016/j.asr.2007.05.063
    [9] SØRAAS F, AARSNES K, OKSAVIK K, et al. Evidence for particle injection as the cause of Dst reduction during HILDCAA events[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(2): 177-186 doi: 10.1016/j.jastp.2003.05.001
    [10] LEMAIRE J F, HEYNDERICKX D, BAKER D N. Radiation Belts: Models and Standards[M]. Washington: American Geophysical Union, 1996: 79-91
    [11] 李肖, 张珅毅, 张伟杰. 反符合杯测量技术在空间中的应用[J]. 核电子学与探测技术, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010

    LI Xiao, ZHANG Shenyi, ZHANG Weijie. The application of anti-coincidence detective cup technology in space[J]. Nuclear Electronics & Detection Technology, 2015, 35(6): 566-570 doi: 10.3969/j.issn.0258-0934.2015.06.010
    [12] ROLF P. Developments and Numerical Simulations for the Electron-Proton-Telescope Onboard Solar Orbiter[D]. Kiel: Kiel University, 2012
    [13] 侯东辉, 张珅毅, 张效信, 等. 空间高能电子探测器准直仪的设计研究[J]. 真空科学与技术学报, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13

    HOU Donghui, ZHANG Shenyi, ZHANG Xiaoxin, et al. Design optimization of novel collimator for detector of space high energy electron: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(10): 965-970 doi: 10.13922/j.cnki.cjovst.2020.10.13
    [14] ZHANG S Y, ZHANG X G, WANG C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite[J]. Science China Earth Sciences, 2014, 57(10): 2558-2566 doi: 10.1007/s11430-014-4853-0
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 录用日期:  2022-05-11
  • 修回日期:  2022-10-18
  • 网络出版日期:  2023-03-30

目录

    /

    返回文章
    返回