留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间太阳物理学科发展战略研究

颜毅华 邓元勇 甘为群 丁明德 田晖 朱小帅

颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅. 空间太阳物理学科发展战略研究[J]. 空间科学学报, 2023, 43(2): 199-211. doi: 10.11728/cjss2023.02.yg04
引用本文: 颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅. 空间太阳物理学科发展战略研究[J]. 空间科学学报, 2023, 43(2): 199-211. doi: 10.11728/cjss2023.02.yg04
YAN Yihua, DENG Yuanyong, GAN Weiqun, DING Mingde, TIAN Hui, ZHU Xiaoshuai. Strategic Study for the Development of Solar Physics in Space (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 199-211 doi: 10.11728/cjss2023.02.yg04
Citation: YAN Yihua, DENG Yuanyong, GAN Weiqun, DING Mingde, TIAN Hui, ZHU Xiaoshuai. Strategic Study for the Development of Solar Physics in Space (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 199-211 doi: 10.11728/cjss2023.02.yg04

空间太阳物理学科发展战略研究

doi: 10.11728/cjss2023.02.yg04
基金项目: 国家重点研究发展计划项目(2021YFA1600500,2022YFF0503800)和国家自然科学基金项目(12233012,11921003,12127901,12250006)共同资助
详细信息
    作者简介:

    颜毅华:E-mail:yanyihua@nssc.ac.cn

  • 中图分类号: P182

Strategic Study for the Development of Solar Physics in Space

  • 摘要: 太阳物理学是研究太阳上发生的物理过程及其对行星际空间环境影响的学科。太阳是人类唯一可以进行细致探测的恒星,也是天然的多尺度过程并存的等离子体实验室,同时,太阳活动直接影响日地空间环境和人类地球家园的宜居性,剧烈的太阳活动如耀斑和日冕物质抛射还会影响人类的航天航空、通信导航、电网等高技术活动与设施。因此对太阳物理的研究不仅是理解浩瀚宇宙的基石,也是理解日地联系和行星宜居性的基础,同时还是国家在航天和空间安全领域的战略需求。21世纪以来,随着卫星探测技术发展,太阳物理学进入了全新的发展阶段。本文梳理了近年来太阳物理学在空间探测中的发展态势,凝练中国太阳物理学未来空间探测发展的重点领域,优化学科布局,推进太阳物理的高质量发展。

     

  • 图  1  世界上第一幅全局性日冕磁图

    Figure  1.  World first global magnetogram of the solar corona

    图  2  中国1 m新真空红外太阳望远镜NVST观测的色球磁场重联

    Figure  2.  Chromospheric magnetic field reconnection observed by China’s New Vacuum Solar Telescope (NVST)

    图  3  通过多视角观测的日冕磁重联。(a)日地与STEREO-A/B卫星的位置,(b)AIA 171 Å(青色)和LASCO C2白光(红色)合成图像,(c)增强的AIA 171 Å图像中清晰的磁重联X型结构,(d)AIA 171 Å(青色)和94(红色)合成图像

    Figure  3.  Coronal magnetic reconnection discovered through muti-angle observations. (a) The positions of the Sun, Earth and STEREO-A/B satellites (SOHO is at L1 point and SDO is in the Earth orbit). (b) A composition of the AIA 171 Å passband image (cyan) and the LASCO C2 white-light image (red). (c) The enhanced AIA 171 Å image showing a clear X-shaped structure. (d) A composite image of the AIA 171 Å (cyan) and 94 Å (red) passbands

    图  4  (a)太阳全方位立体探测系统组成和空间布局,(b)太阳环日全景探测布局

    Figure  4.  (a) Composition and space layout of the solar omnidirectional stereo exploration system, (b) configuration of Solar Ring mission

  • [1] Committee on a Decadal Strategy for Solar and Space Physics. Solar and Space Physics: A Science for A Technological Society[M]. Washington DC: The National Academies Press, 2012
    [2] MARIRRODRIGA C G, PACROS A, STRANDMOE S, et al. Solar orbiter: mission and spacecraft design[J]. Astronomy & Astrophysics, 2021, 646: A121
    [3] FOX N J, VELLI M C, BALE S D, et al. The solar probe plus mission: humanity’s first visit to our star[J]. Space Science Reviews, 2016, 204(1/2/3/4): 7-48
    [4] DE PONTIEU B, TITLE A M, LEMEN J R, et al. The interface region imaging spectrograph (IRIS)[J]. Solar Physics, 2014, 289(7): 2733-2779 doi: 10.1007/s11207-014-0485-y
    [5] PESNELL W D, THOMPSON B J, CHAMBERLIN P C. The Solar Dynamics Observatory (SDO)[J]. Solar Physics, 2012, 275(1/2): 3-15
    [6] KOSUGI T, MATSUZAKI K, SAKAO T, et al. The Hinode (Solar-B) mission: an overview[J]. Solar Physics, 2007, 243(1): 3-17 doi: 10.1007/s11207-007-9014-6
    [7] KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission: an introduction[J]. Space Science Reviews, 2008, 136(1/2/3/4): 5-16
    [8] DOMINGO V, FLECK B, POLAND A I. The SOHO mission: an overview[J]. Solar Physics, 1995, 162(1/2): 1-37
    [9] LIN R P, DENNIS B R, HURFORD G J, et al. The reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)[J]. Solar Physics, 2002, 210(1/2): 3-32 doi: 10.1023/A:1022428818870
    [10] GIZON L, CAMERON R H, POURABDIAN M, et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere[J]. Science, 2020, 368(6498): 1469-1472 doi: 10.1126/science.aaz7119
    [11] BALE S D, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576(7786): 237-242 doi: 10.1038/s41586-019-1818-7
    [12] KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind[J]. Nature, 2019, 576(7786): 228-231 doi: 10.1038/s41586-019-1813-z
    [13] MCCOMAS D J, CHRISTIAN E R, COHEN C M S, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576(7786): 223-227 doi: 10.1038/s41586-019-1811-1
    [14] HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576(7786): 232-236 doi: 10.1038/s41586-019-1807-x
    [15] KASPER J C, KLEIN K G, LICHKO E, et al. Parker solar probe enters the magnetically dominated solar corona[J]. Physical Review Letters, 2021, 127(25): 255101 doi: 10.1103/PhysRevLett.127.255101
    [16] BROOKS D H, UGARTE-URRA I, WARREN H P. Full-Sun observations for identifying the source of the slow solar wind[J]. Nature Communications, 2015, 6: 5947 doi: 10.1038/ncomms6947
    [17] DEFOREST C E, HOWARD T A, MCCOMAS D J. Tracking coronal features from the low corona to earth: a quantitative analysis of the 2008 December 12 coronal mass ejection[J]. The Astrophysical Journal, 2013, 769(1): 43 doi: 10.1088/0004-637X/769/1/43
    [18] DE PONTIEU B, VAN DER VOORT L R, MCINTOSH S W, et al. On the prevalence of small-scale twist in the solar chromosphere and transition region[J]. Science, 2014, 346(6207): 1255732 doi: 10.1126/science.1255732
    [19] TIAN H, DELUCA E E, CRANMER S R, et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere[J]. Science, 2014, 346(6207): 1255711 doi: 10.1126/science.1255711
    [20] TESTA P, DE PONTIEU B, ALLRED J, et al. Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares[J]. Science, 2014, 346(6207): 1255724 doi: 10.1126/science.1255724
    [21] PETER H, TIAN H, CURDT W, et al. Hot explosions in the cool atmosphere of the Sun[J]. Science, 2014, 346(6207): 1255726 doi: 10.1126/science.1255726
    [22] HANSTEEN V, DE PONTIEU B, CARLSSON M, et al. The unresolved fine structure resolved: IRIS observations of the solar transition region[J]. Science, 2014, 346(6207): 1255757 doi: 10.1126/science.1255757
    [23] CHEN H D, ZHANG J, DE PONTIEU B, et al. Coronal mini-jets in an activated solar tornado-like prominence[J]. The Astrophysical Journal, 2020, 899(1): 19 doi: 10.3847/1538-4357/ab9cad
    [24] ANTOLIN P, PAGANO P, TESTA P, et al. Reconnection nanojets in the solar corona[J]. Nature Astronomy, 2021, 5(1): 54-62
    [25] ZHANG J, CHENG X, DING M D. Observation of an evolving magnetic flux rope before and during a solar eruption[J]. Nature Communications, 2012, 3: 747 doi: 10.1038/ncomms1753
    [26] SU Y, VERONIG A M, HOLMAN G D, et al. Imaging coronal magnetic-field reconnection in a solar flare[J]. Nature Physics, 2013, 9(8): 489-493 doi: 10.1038/nphys2675
    [27] CHEN B, BASTIAN T S, SHEN C C, et al. Particle acceleration by a solar flare termination shock[J]. Science, 2015, 350(6265): 1238-1242 doi: 10.1126/science.aac8467
    [28] BERGHMANS D, AUCHÈRE F, LONG D M, et al. Extreme-UV quiet Sun brightenings observed by the Solar Orbiter/EUI[J]. Astronomy & Astrophysics, 2021, 656: L4
    [29] TACCNI L J, ARRIDGE C S, BUONANNO A, et al. Voyage 2050[M]. Paris: ESA, 2021
    [30] ZHANG P, HU X Q, LU Q F, et al. FY-3 E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8 doi: 10.1007/s00376-021-1304-7
    [31] LI C, FANG C, LI Z, et al. The Chinese H $ \mathrm{\alpha } $ Solar Explorer (CHASE) mission: an overview[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 289602
    [32] BAI X Y, TIAN H, DENG Y Y, et al. The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite[OL]. arXiv preprint arXiv: 2303.03669, 2023
    [33] GAN W Q, FENG L, SU Y. A Chinese solar observatory in space[J]. Nature Astronomy, 2022, 6(1): 165 doi: 10.1038/s41550-021-01593-9
    [34] GAN W Q, ZHU C, DENG Y Y, et al. Advanced space-based solar observatory (ASO-S): an overview[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 156 doi: 10.1088/1674-4527/19/11/156
    [35] 甘为群, 颜毅华, 黄宇. 2016-2030年我国空间太阳物理发展的若干思考[J]. 中国科学:物理 力学 天文学, 2019, 49(5): 059602

    GAN Weiqun, YAN Yihua, HUANG Yu. Prospect for space solar physcis in 2016-2030[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(5): 059602
    [36] 甘为群, 常进, 马宇蒨. 中国空间太阳物理40年[J]. 空间科学学报, 2021, 41(1): 76-83 doi: 10.11728/cjss2021.01.076

    GAN Weiqun, CHANG Jin, MA Yuqian. 40 years of space solar physics in China[J]. Chinese Journal of Space Science, 2021, 41(1): 76-83 doi: 10.11728/cjss2021.01.076
    [37] 吴季, 孙丽琳, 尤亮, 等. 2016-2030年中国空间科学发展规划建议[J]. 中国科学院院刊, 2015, 30(6): 707-720

    WU Ji, SUN Lilin, YOU Liang, et al. Prospect for Chinese space science in 2016-2030[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6): 707-720
    [38] 中国科学院空间领域战略研究组. 中国至2050年空间科技发展路线图[M]. 北京: 科学出版社, 2009

    Space Strategy Research Group of the Chinese Academy of Sciences. Space Science & Technology in China: A Roadmap to 2050[M]. Beijing: Science Press, 2009
    [39] 国家自然科学基金委员会, 中国科学院. 中国学科发展战略: 空间科学[M]. 北京: 科学出版社, 2019

    National Natural Science Foundation of China, Chinese Academy of Sciences. China’s Disciplinary Development Strategy: Space Science[M]. Beijing: Science Press, 2019
    [40] 吴季等. 2016-2030年空间科学规划研究报告[M]. 北京: 科学出版社, 2016

    WU Ji, et al. Research Report on Space Science Development Planning in 2016-2030[M]. Beijing: Science Press, 2016
    [41] 国家自然科学基金委员会, 中国科学院. 中国学科发展战略: 空间科学[M]. 北京: 科学出版社, 2019

    National Natural Science Foundation of China, Chinese Academy of Sciences. Strategy of China’s Disciplinary Development: Space Science[M]. Beijing: Science Press, 2019
    [42] JIANG J, CAMERON R H, SCHÜSSLER M. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface[J]. The Astrophysical Journal, 2014, 791(1): 5 doi: 10.1088/0004-637X/791/1/5
    [43] JIANG J. Nonlinear mechanisms that regulate the solar cycle amplitude[J]. The Astrophysical Journal, 2020, 900(1): 19 doi: 10.3847/1538-4357/abaa4b
    [44] YANG Z H, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369(6504): 694-697 doi: 10.1126/science.abb4462
    [45] ZHU X S, WANG H N, DU Z L, et al. Forced field extrapolation: testing a magnetohydrodynamic (MHD) relaxation method with a flux-rope emergence model[J]. The Astrophysical Journal, 2013, 768(2): 119 doi: 10.1088/0004-637X/768/2/119
    [46] ZHANG H Q, YANG S B. Distribution of magnetic helicity flux with solar cycles[J]. The Astrophysical Journal, 2013, 763(2): 105 doi: 10.1088/0004-637X/763/2/105
    [47] YANG S B, BÜCHNER J, SKÁLA J, et al. Evolution of relative magnetic helicity: New boundary conditions for the vector potential[J]. Astronomy & Astrophysics, 2018, 613: A27
    [48] SAMANTA T, TIAN H, Yurchyshyn V, et al. Generation of solar spicules and subsequent atmospheric heating[J]. Science, 2019, 366: 890 doi: 10.1126/science.aaw2796
    [49] ZHOU Y H, CHEN P F, HONG J, et al. Simulations of solar filament fine structures and their counterstreaming flows[J]. Nature Astronomy, 2020, 4(10): 994-1000 doi: 10.1038/s41550-020-1094-3
    [50] YANG S H, ZHANG J, XIANG Y Y. Magnetic reconnection between small-scale loops observed with the new vacuum solar telescope[J]. The Astrophysical Journal Letters, 2015, 798(1): L11
    [51] HAO Q, YANG K, CHENG X, et al. A circular white-light flare with impulsive and gradual white-light kernels[J]. Nature Communications, 2017, 8(1): 2202 doi: 10.1038/s41467-017-02343-0
    [52] YAN X L, XUE Z K, JIANG C W, et al. Fast plasmoid-mediated reconnection in a solar flare[J]. Nature Communications, 2022, 13(1): 640 doi: 10.1038/s41467-022-28269-w
    [53] XUE Z K, YAN X L, CHENG X, et al. Observing the release of twist by magnetic reconnection in a solar filament eruption[J]. Nature Communications, 2016, 7: 11837 doi: 10.1038/ncomms11837
    [54] WANG W S, LIU R, WANG Y M, et al. Buildup of a highly twisted magnetic flux rope during a solar eruption[J]. Nature Communications, 2017, 8(1): 1330 doi: 10.1038/s41467-017-01207-x
    [55] GOU T Y, LIU R, KLIEM B, et al. The birth of a coronal mass ejection[J]. Science Advances, 2019, 5(3): eaau7004 doi: 10.1126/sciadv.aau7004
    [56] SUN J Q, CHENG X, DING M D, et al. Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption[J]. Nature Communications, 2015, 6: 7598 doi: 10.1038/ncomms8598
    [57] JIANG C W, FENG X S, LIU R, et al. A fundamental mechanism of solar eruption initiation[J]. Nature Astronomy, 2021, 5(11): 1126-1138 doi: 10.1038/s41550-021-01414-z
    [58] NI L, LUKIN V S, MURPHY N A, et al. Magnetic reconnection in strongly magnetized regions of the low solar chromosphere[J]. The Astrophysical Journal, 2018, 852(2): 95 doi: 10.3847/1538-4357/aa9edb
    [59] NI L, KLIEM B, LIN J, et al. Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability[J]. The Astrophysical Journal, 2015, 799(1): 79 doi: 10.1088/0004-637X/799/1/79
    [60] WANG L H, KRUCKER S, MASON G M, et al. The injection of ten electron/3He-rich SEP events[J]. Astronomy & Astrophysics, 2016, 585: A119
    [61] QIN G, KONG F J, ZHANG L H. Effects of shock and turbulence properties on electron acceleration[J]. The Astrophysical Journal, 2018, 860(1): 3 doi: 10.3847/1538-4357/aac26f
    [62] CHEN Y, ZHANG Z L, NI S L, et al. Plasma emission induced by ring-distributed energetic electrons in overdense plasmas[J]. Physics of Plasmas, 2022, 29(11): 112113 doi: 10.1063/5.0108780
    [63] CHEN X Y, YAN Y H, TAN B L, et al. Quasi-periodic Pulsations before and during a Solar Flare in AR 12242[J]. The Astrophysical Journal, 2019, 878(2): 78 doi: 10.3847/1538-4357/ab1d64
    [64] HUANG X, WANG H N, XU L, et al. Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
    [65] MA L, CHEN Z, XU L, et al. Multimodal deep learning for solar radio burst classification[J]. Pattern Recognition, 2017, 61: 573-582 doi: 10.1016/j.patcog.2016.04.013
    [66] XU L, YAN Y H, YU X X, et al. LSTM neural network for solar radio spectrum classification[J]. Research in Astronomy and Astrophysics, 2019, 19(9): 135 doi: 10.1088/1674-4527/19/9/135
    [67] YING B L, BEMPORAD A, FENG L, et al. Extensive study of a coronal mass ejection with UV and white-light coronagraphs: the need for multiwavelength observations[J]. The Astrophysical Journal, 2020, 899(1): 12 doi: 10.3847/1538-4357/aba431
    [68] SU Y, VERONIG A M, HANNAH I G, et al. Determination of differential emission measure from solar extreme ultraviolet images[J]. The Astrophysical Journal Letters, 2018, 856(1): L17 doi: 10.3847/2041-8213/aab436
    [69] XIA F X Y, WANG T J, SU Y, et al. Plasma heating and nanoflare caused by slow-mode wave in a coronal loop[J]. The Astrophysical Journal Letters, 2022, 936(1): L13 doi: 10.3847/2041-8213/ac8afe
    [70] 邓元勇, 周桂萍, 代树武, 等. 太阳极轨天文台[J]. 科学通报, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674

    DENG Yuanyong, ZHOU Guiping, DAI Shuwu, et al. Solar polar-orbit observatory[J]. Chinese Science Bulletin, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674
    [71] WANG Y M, BAI X Y, CHEN C Y, et al. Solar ring mission: building a panorama of the Sun and inner-heliosphere[J]. Advances in Space Research, 2023, 71(1): 1146-1164 doi: 10.1016/j.asr.2022.10.045
    [72] 杨孟飞, 汪景琇, 王赤, 等. 太阳立体探测任务设想[J]. 科学通报, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706

    YANG Mengfei, WANG Jingxiu, WANG Chi, et al. Envisioning the solar stereo exploration mission[J]. Chin Sci Bull, 2023, 68(8): 859-871 doi: 10.1360/TB-2022-0706
  • 加载中
图(4)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  200
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 录用日期:  2023-03-06
  • 修回日期:  2023-03-11
  • 网络出版日期:  2023-04-07

目录

    /

    返回文章
    返回