Research Progress on Estimating Space Objects Characteristics Using Ground-Based Observation Data
-
摘要: 太空活动日益频繁,空间目标数量迅速增长,目标解体和碰撞生成大量空间碎片可能引发灾难性后果,因此对空间目标进行监测与表征变得尤为重要。空间目标的几何特性、运动特性、材质特性等信息对于目标识别、碰撞规避和主动清除具有重要意义。AMOS会议作为太空态势感知领域的重要学术会议,汇聚了大量关于空间目标特性估计的前沿研究成果,本研究对AMOS会议2016~2023年会议论文集中的相关技术论文进行系统梳理和总结。这些文献涵盖了地基观测数据在空间目标表征中的应用,从姿态估计、形状估计到姿态演化以及机器学习辅助决策等方面,为空间目标的综合分析提供了丰富的技术手段和估计方法,为未来的空间目标表征技术发展提供了有价值的参考。本文针对特性估计相关数据日益丰富,反演算法越发成熟的现状和趋势,提出我国应该建立体系化的目标特性估计机制新思路。Abstract:
With the increase of space activities and the rapid growth in the number of space objects, the fragmentation and collision of these objects have generated large amounts of space debris, potentially leading to catastrophic consequences. As such, the monitoring and characterization of space objects have become crucial. Information about the geometric, kinematic, and material properties of these objects is critical for target identification, collision avoidance, and active debris removal. The Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, a prominent academic platform in the field of space situational awareness, has brought together cutting-edge research on the characterization of space objects. This study systematically reviews and summarizes relevant technical papers presented at the AMOS Conferences from 2016 to 2023. These papers explore the application of ground-based observation data in the characterization of space objects, covering topics such as attitude estimation, shape estimation, attitude evolution, and machine learning-assisted decision-making. Together, they provide a wealth of technical approaches and estimation methods that contribute to the comprehensive analysis of space objects and offer valuable insights for advancing future characterization techniques. In light of the increasing availability of data related to object characterization and the growing maturity of inversion algorithms, this paper proposes a new strategy for establishing a systematic framework for target characteristics estimation in China.-
Key words:
- Astrometry /
- space objects /
- light curves /
- space situational awareness /
- characterization /
- machine learning
-
-
计量
- 文章访问数: 49
- HTML全文浏览量: 5
- PDF下载量: 1
-
被引次数:
0(来源:Crossref)
0(来源:其他)