留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Advances of the Chinese Meridian Project in 2020-2021

WANG Chi WANG Jiangyan XU Jiyao

WANG Chi, WANG Jiangyan, XU Jiyao. Research Advances of the Chinese Meridian Project in 2020-2021 (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx. DOI: 10.11728/cjss2022.04.yg04
Citation: WANG Chi, WANG Jiangyan, XU Jiyao. Research Advances of the Chinese Meridian Project in 2020-2021 (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx. DOI: 10.11728/cjss2022.04.yg04

Research Advances of the Chinese Meridian Project in 2020-2021

doi: 10.11728/cjss2022.04.yg04
More Information
  • [1] CHENG C, YI F. Falling mixed-phase ice virga and their liquid parent cloud layers as observed by ground-based lidars[J]. Remote Sensing, 2020, 12(13): 2094 doi: 10.3390/rs12132094
    [2] WANG W, YI F, LIU F C, et al. Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a 30°N plain site[J]. Remote Sensing, 2020, 12(23): 3998 doi: 10.3390/rs12233998
    [3] QIU S C, WANG N, SOON W, et al. The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres[J]. Atmospheric Chemistry and Physics, 2021, 21(15): 11927-11940 doi: 10.5194/acp-21-11927-2021
    [4] GERDING M, DALY S, PLANE J M C. Lidar soundings of the mesospheric nickel layer using Ni(3F) and Ni(3D) transitions[J]. Geophysical Research Letters, 2019, 46(1): 408-415 doi: 10.1029/2018GL080701
    [5] ZOU X, WANG J H, LI F Q, et al. Atmospheric turbulence spectrum in high resolution mode detected by a high power-aperture sodium lidar over Yanqing, Beijing (40.47°N, 115.97°E)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270: 107706 doi: 10.1016/j.jqsrt.2021.107706
    [6] ZHANG W F, CHEN G, ZHANG S D, et al. Statistical study of the mid-latitude mesospheric vertical winds observed by the Wuhan and Beijing MST radars in China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(18): e2020JD032776
    [7] LI N, LUAN X L, LEI J H, et al. Variations of mesospheric neutral winds and tides observed by a meteor radar chain over China during the 2013 sudden stratospheric warming[J]. Journal of Geophysical Research:Space Physics, 2020, 125(5): e2019JA027443
    [8] GONG Y, XUE J W, MA Z, et al. Strong quarter diurnal tides in the mesosphere and lower thermosphere during the 2019 Arctic sudden stratospheric warming over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA029066
    [9] LUO J H, GONG Y, MA Z, et al. Study of the quasi 10‐day waves in the MLT region during the 2018 February SSW by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028367
    [10] MA Z, GONG Y, ZHANG S D, et al. Study of a Quasi 4‐day oscillation during the 2018/2019 SSW over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027687
    [11] HUANG F Q, LEI J H, ZHANG R L, et al. Prominent daytime TEC enhancements under the quiescent condition of January 2017[J]. Geophysical Research Letters, 2020, 47(14): e2020GL088398
    [12] LIU J, ZHANG D H, HAO Y Q, et al. Multi‐instrumental observations of the quasi‐16‐day variations from the lower thermosphere to the topside ionosphere in the low‐latitude eastern Asian sector during the 2017 sudden stratospheric warming event[J]. Journal of Geophysical Research: Space Physics, 2020, 125(3): e2019JA027505
    [13] MO X H, ZHANG D H. Six‐day periodic variation in equatorial ionization anomaly region[J]. Journal of Geophysical Research: Space Physics, 2020, 125(11): e2020JA028225
    [14] JIANG G Y, XIONG C, STOLLE C, et al. Comparison of thermospheric winds measured by GOCE and ground‐based FPIs at low and middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028182
    [15] LIU X, XU J Y, YUE J, et al. Global balanced wind derived from SABER temperature and pressure observations and its validations[J]. Earth System Science Data, 2021, 13(12): 5643-5661 doi: 10.5194/essd-13-5643-2021
    [16] LIU L, DING Z H, LE H J, et al. New features of the enhancements in electron density at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027539
    [17] LIU L B, DING Z H, ZHANG R L, et al. A case study of the enhancements in ionospheric electron density and its longitudinal gradient at Chinese low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027751
    [18] LI W B, CHEN Y D, LIU L B, et al. A statistical study on the winter ionospheric nighttime enhancement at middle latitudes in the Northern Hemisphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027950
    [19] CHEN G, WANG Z H, JIN H, et al. A case study of the daytime intense radar backscatter and strong ionospheric scintillation related to the low‐latitude E‐region irregularities[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027532
    [20] SUN W J, NING B Q, HU L H, et al. The evolution of complex Es observed by multi instruments over low‐latitude China[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2019JA027656
    [21] HU L H, ZHAO X K, SUN W J, et al. Statistical characteristics and correlation of low‐latitude F region bottom‐type irregularity layers and plasma plumes over Sanya[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA027855
    [22] ZHAO X K, XIE H Y, HU L H, et al. Climatology of equatorial and low-latitude F region kilometer-scale irregularities over the meridian circle around 120°E/60°W[J]. GPS Solutions, 2021, 25(1): 20 doi: 10.1007/s10291-020-01054-2
    [23] XIE H Y, LI G Z, ZHAO X K, et al. Coupling between E region quasi‐periodic echoes and F region medium‐scale traveling ionospheric disturbances at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027720
    [24] HU L H, LEI J H, SUN W J, et al. Latitudinal variations of daytime periodic ionospheric disturbances from Beidou GEO TEC observations over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028809
    [25] SUN L C, XU J Y, ZHU Y J, et al. Interaction between a southwestward propagating MSTID and a poleward moving WSA‐like plasma patch on a magnetically quiet night at midlatitude China region[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028085
    [26] XU J Y, LI Q Z, SUN L C, et al. The ground‐based airglow imager network in China: recent observational results[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. American Geophysical Union, 2021: 365-394
    [27] WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium‐scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723
    [28] WU K, XU J Y, ZHU Y J, et al. Ionospheric plasma vertical drift and zonal wind variations cause unusual evolution of EPBs during a geomagnetically quiet night[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029893
    [29] SUN L C, XU J Y, ZHU Y J, et al. Interaction between an EMSTID and an EPB in the EIA Crest Region over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA029005
    [30] LUO J, XU J Y, WU K, et al. The influence of ionospheric neutral wind variations on the morphology and propagation of medium scale traveling ionospheric disturbances on 8 th August 2016[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029037
    [31] YU B K, XUE X H, SCOTT C J, et al. Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation[J]. Atmospheric Chemistry and Physics, 2021, 21(5): 4219-4230 doi: 10.5194/acp-21-4219-2021
    [32] YU B, SCOTT C J, XUE X H, et al. A signature of 27-day solar rotation in the concentration of metallic ions within the terrestrial ionosphere[J]. The Astrophysical Journal, 2021, 916(2): 106 doi: 10.3847/1538-4357/ac0886
    [33] SUN W, ZHAO X, HU L, et al. Morphological characteristics of thousand‐kilometer‐scale Es structures over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028712
    [34] SUN W J, HU L H, YANG Y Y, et al. Occurrences of regional strong Es irregularities and corresponding scintillations characterized using a high‐temporal‐resolution GNSS network[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029460
    [35] TANG Q, ZHAO J Q, YU Z B, et al. Occurrence and variations of middle and low latitude sporadic E layer investigated with longitudinal and latitudinal chains of ionosondes[J]. Space Weather, 2021, 19(12): e2021SW002942
    [36] TANG Q, ZHOU C, LIU H X, et al. The possible role of turbopause on sporadic‐E layer formation at middle and low latitudes[J]. Space Weather, 2021, 19(12): e2021SW002883
    [37] ZHANG Q H, ZHANG Y L, WANG C, et al. A space hurricane over the Earth’s polar ionosphere[J]. Nature Communications, 2021, 12(1): 1207 doi: 10.1038/s41467-021-21459-y
    [38] ZHANG Q H, ZHANG Y L, WANG C, et al. Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16193-16198 doi: 10.1073/pnas.2000614117
    [39] WANG Y, ZHANG Q H, MA Y Z, et al. Polar ionospheric large‐scale structures and dynamics revealed by TEC keogram extracted from TEC maps[J]. Journal of Geophysical Research: Space Physics, 2020, 125(1): e2019JA027020
    [40] ZHANG D, ZHANG Q H, MA Y Z, et al. Solar and geomagnetic activity impact on occurrence and spatial size of cold and hot polar cap patches[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094526
    [41] MA Y Z, ZHANG Q H, LYONS L R, et al. Is westward travelling surge driven by the polar cap flow channels?[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028498
    [42] LIU J, WANG W B, QIAN L Y, et al. Solar flare effects in the Earth’s magnetosphere[J]. Nature Physics, 2021, 17(7): 807-812 doi: 10.1038/s41567-021-01203-5
    [43] LIU J, QIAN L Y, MAUTE A, et al. Electrodynamical coupling of the geospace system during solar flares[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028569
    [44] LI Q L, HUANG F Q, ZHONG J H, et al. Persistence of the long‐duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2020, 125(11): e2020JA028238
    [45] REN D X, LEI J H, ZHOU S, et al. High‐speed solar wind imprints on the ionosphere during the recovery phase of the August 2018 geomagnetic storm[J]. Space Weather, 2020, 18(7): e2020SW002480
    [46] JIMOH O, LEI J H, HUANG F Q. Investigation of daytime total electron content enhancements over the Asian-Australian sector observed from the Beidou geostationary satellite during 2016-2018[J]. Remote Sensing, 2020, 12(20): 3406 doi: 10.3390/rs12203406
    [47] OWOLABI C, LEI J H, BOLAJI O S, et al. Ionospheric current variations induced by the solar flares of 6 and 10 September 2017[J]. Space Weather, 2020, 18(11): e2020SW002608
    [48] ZHANG R L, LE H J, LI W B, et al. Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028450
    [49] HUANG F Q, LI Q L, SHEN X H, et al. Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028483
    [50] ZHANG J J, YU Y Q, WANG C, et al. Measurements and simulations of the geomagnetically induced currents in low‐latitude power networks during geomagnetic storms[J]. Space Weather, 2020, 18(8): e2020SW002549
    [51] HE J H, YUE X, HU L, et al. Observing system impact on ionospheric specification over China using EnKF assimilation[J]. Space Weather, 2020, 18(10): e2020SW002527
    [52] XU J Y, LIU W J, BIAN J C, et al. Method for retrieval of atmospheric water vapor using OH airglow for correction of astronomical observations[J]. Astronomy & Astrophysics, 2020, 639: A29
    [53] KONG W Q, HU Z J, WU J J, et al. A comparative study of estimating auroral electron energy from ground-based hyperspectral imagery and DMSP-SSJ5 particle data[J]. Remote Sensing, 2020, 12(14): 2259 doi: 10.3390/rs12142259
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回