Volume 34 Issue 3
May  2014
Turn off MathJax
Article Contents
YU Tao, MAO Tian, XIA Chunliang, WAN Weixing. A Simulation of the Mid- and Low-latitude Ionospheric Electric Fields[J]. Chinese Journal of Space Science, 2014, 34(3): 287-295. doi: 10.11728/cjss2014.03.287
Citation: YU Tao, MAO Tian, XIA Chunliang, WAN Weixing. A Simulation of the Mid- and Low-latitude Ionospheric Electric Fields[J]. Chinese Journal of Space Science, 2014, 34(3): 287-295. doi: 10.11728/cjss2014.03.287

A Simulation of the Mid- and Low-latitude Ionospheric Electric Fields

doi: 10.11728/cjss2014.03.287
More Information
  • Corresponding author: YU Tao,E-mail:yutao@cma.gov.cn
  • Received Date: 2013-09-18
  • Rev Recd Date: 2014-03-03
  • Publish Date: 2014-05-15
  • A theoretical model of ionospheric electric fields at mid- and low-latitudes is developed. In the geomagnetic dipolar coordinate system, the ionospheric dynamo equations were solved, and the ionospheric electric potential and electric field were derived respectively. Major parameters for the model inputs, such as the neutral winds, the densities and temperatures of electron, ions and neutrals, are obtained from empirical models. The global ionospheric electrical potential and field at mid- and low-latitudes derived from our model are largely in agreement with the results presented by other authors and the empirical model. Using our model, it is found that the diurnal component of the HWM93 wind mainly contributed to the formation of the vertical electric field, while the semidiurnal component mainly contributed to the zonal electric field. Finally, by adjustment of the input F region winds and conductivities, most discrepancies between our model and the empirical one can be eliminated, and it is proved that the F region dynamo is the most significant contribution to the electric fields.

     

  • loading
  • [1]
    Fejer B G, D T Farley, R F Woodman, et al. Dependence of equatorial F region vertical drifts on season and solar circle,[J]. J. Geophys. Res., 1979, 84:5792
    [2]
    Fejer B G. The equatorial ionospheric electric fields—A review,[J]. J. Atmos. Terr. Phys., 1981, 43:377
    [3]
    Fejer B G, E R de Paula, R A Heelis, et al. Global equatorial ionospheric vertical plasma drift measured by the AE-E satellite,[J]. J. Geophys. Res., 1995, 100:5769
    [4]
    Richmond A D, M Blanc, B A Emery, et al. An empirical model of quiet- day ionospheric electric fields at middle and low latitudes,[J]. J. Geophys. Res., 1980, 85:4658
    [5]
    Van Sabben D. Ionospheric current systems caused by non-periodic winds,[J]. J. Atmos. Terr. Phys., 1962, 24:959-974
    [6]
    Tarpley J D. The ionospheric wind dynamo-I, Lunar tide,[J]. Planet. Space Sci., 1970, 18:1075
    [7]
    Tarpley J D. The ionospheric wind dynamo-II, Solar tide,[J]. Planet. Space Sci., 1970, 18:1090
    [8]
    Untiedt J. A model of the equatorial electrojet involving meridional currents,[J]. J. Geophys. Res., 1967, 72:5779
    [9]
    Sugiura M, Poros D J. An improved model equatorial electrojet with a meridional current system,[J]. J. Geophys. Res., 1969, 74:4025
    [10]
    Richmond A D. Equatorial electrojet-I. Development of a model including winds and instabilities,[J]. J. Atmos. Terr. Phys., 1973, 35:1083
    [11]
    Richmond A D. Equatorial electrojet-II. Use of the model to study the equatorial ionosphere,[J]. J. Atmos. Terr. Phys., 1973, 35:1105
    [12]
    Masahiko T, Taeda H. Three-dimensional structure of ionospheric currents, I, currents caused by diurnal tidal winds,[J]. J. Geophys. Res., 1980, 85:6895
    [13]
    Crain D J, Heelis R A, Bailey G J, et al. Low-latitude plasma drift from a simulation of the global atmospheric dynamo,[J]. J. Geophys. Res., 1993, 98:6039
    [14]
    Ren Z P, Wan W X, Wei Y, et al. A theoretical model for mid-and low-latitude ionospheric electric fields in realistic geomagnetic fields,[J]. Chin. Sci. Bull., 2008, 53(24):3883
    [15]
    Ren Z P, Wan W X, Liu L B. GCITEM-IGGCAS: A new global coupled ionosphere-thermosphere-electrodynamics model,[J]. J. Atmos. Terr. Phys., 2009, 71:2064
    [16]
    Weimer D R. A flexible IMF dependent model of high-latitude electric potentials having space weather applications,[J]. Geophys. Res. Lett., 1996, 23:2549
    [17]
    Hu Y Q, Wu S T. A Full-Implicit-Continuous-Eulerian (FICE) scheme for multidimensional transient magnetohydrodynamic (MHD) flows,[J]. J. Comput. Phys., 1984, 55:33
    [18]
    Richmond A D. Numerical model of the equatorial electrical electrojet. Rep. AFCRL-72-0668, ERP 421, Air Force Cambridge Res. Lab., Hanscom AFB, Bedford, Mass. 1972
    [19]
    Forbes J. The equatorial electrojet,[J]. Rev. Geophys. Space Phys., 1981, 19:469
    [20]
    Woodman R F, Rastongi R G, Calderon C. Solar cycle effects on the electric fields in the equatorial ionosphere,[J]. J. Geophys. Res., 1977, 82:5257
    [21]
    Fesen C G, Crowley G, Roble R G, et al. Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts,[J]. Geophys. Res. Lett., 2000, 27:1851
    [22]
    Du J, Stening R J . Simulating the ionospheric dynamo-II. Equatorial electric fields,[J]. J. Atmos. Terr. Phys., 1999, 61:925
    [23]
    Rishbeth H. The F-layer dynamo,[J]. Planet. Space Sci., 1971, 19:263
    [24]
    Farley D T, E Bonelli, B G Fejer, et al. The pre-reversal enhancement of the zonal electric field in the equatorial ionosphere,[J]. J. Geophys. Res., 1986, 91:13,723
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1032) PDF Downloads(1926) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return