Volume 34 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
Lü Junming, Miao Wenbo, Cheng Xiaoli, Wang Qiang. Impact of Martian Atmosphere Model Parameters on Aerodynamic Characteristics of Mars Science Laboratory[J]. Chinese Journal of Space Science, 2014, 34(4): 377-383. doi: 10.11728/cjss2014.04.377
Citation: Lü Junming, Miao Wenbo, Cheng Xiaoli, Wang Qiang. Impact of Martian Atmosphere Model Parameters on Aerodynamic Characteristics of Mars Science Laboratory[J]. Chinese Journal of Space Science, 2014, 34(4): 377-383. doi: 10.11728/cjss2014.04.377

Impact of Martian Atmosphere Model Parameters on Aerodynamic Characteristics of Mars Science Laboratory

doi: 10.11728/cjss2014.04.377
  • Received Date: 2013-09-09
  • Rev Recd Date: 2014-02-24
  • Publish Date: 2014-07-15
  • The difference between Martian atmosphere and Earth atmosphere results in the different flow field and property around the entry vehicles, and the possible change of aerodynamic characteristic on account of chemical non-equilibrium will differ from that in Earth re-entry process. The differences between Martian and Earth atmosphere include species, density and temperature. Three-dimensional Navier-Stokes equations coupling real gas model are solved by a parallel code to analyze the change of aerodynamic characteristic of Mars Science Laboratory (MSL) introduced by CO2 effect as well as the uncertainty of density and temperature in hypersonic entry phase of Entry-Descending-Landing procedure when MSL entering the Martian atmosphere. The results show that the computational data of Viking based on current Martian atmosphere model and numerical methods has a good agreement with both the flight data and LAURA results. Gas species in the model, which are mainly CO2 for Mars, have a great influence on the drag and pitching moment coefficients compared to the air model of Earth, so CO2 correction should be considered while the aerodynamic data is derived from air. Increase of the density in atmosphere model enhances chemical non-equilibrium effect, but produces no distinctness for aerodynamic characteristic; increase of the temperature improves chemical non-equilibrium effect greatly, and has a small influence on aerodynamic characteristic.

     

  • loading
  • [1]
    Braun R D, Manning R M. Mars exploration entry, descent and landing challenges[J]. J. Spacecr. Rock., 2007, 44(2):310-323
    [2]
    Wright M J, Tang C Y, Edquist K T, et al. A review of aerothermal modeling for Mars entry missions[C]//48th AIAA Aerospace Sciences Meeting. Orlando: AIAA, 2010: 443
    [3]
    Druguet M C. Prediction of the flow field over an orbiter entering the Mars atmosphere[J]. Shock Waves, 2010, 20:251-261
    [4]
    Viviani A, Pezzella G. Aerodynamic Analysis of a Capsule Vehicle for a Manned Exploration Mission to Mars[R]. AIAA 2009-7386, 2009
    [5]
    Ingoldby R N, Michel F C, Flaherty T M, et al. Entry Data Analysis for Viking Landers 1 and 2 Final Report[R]. NASA CR-159388, 1976
    [6]
    Gnoffo P A, Braun R D, Weilmuenster K J, et al. Prediction and validation of Mars pathfinder hypersonic aerodynamic database[J]. J. Spacecr. Rock., 1999, 36(3):367-373
    [7]
    Gnoffo P A, Weilmuenster K J, Braun R D, Cruz C I. Influence of sonic-line location on Mars pathfinder probe aerothermodynamics. J. Spacecr. Rock., 1996, 33(2):169-177
    [8]
    Schoenenberger M, Cheatwood F M, Desai P N. Static Aerodynamics of the Mars Exploration Rover Entry Capsule[R]. AIAA 2005-0056, 2005
    [9]
    Mark S, Artem D, Pieter B et al. Aerodynamic Challenges for the Mars Science Laboratory Entry, Descent and Landing[R]. AIAA 2009-3914, 2009
    [10]
    Dyakonov A, Edquist K, Shoenenberger M. Influence of the Angle of Attack on the Aerothermodynamic Environment of the Mars Science Laboratory[R]. AIAA 2006-3889, 2006
    [11]
    Mitcheltree R A, Gnoffo P A. Wake Flow about the Mars Pathfinder Entry Vehicle[J]. J. Spacecr. Rock., 1995, 32(5):771-776
    [12]
    Karl T E. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data[R]. AIAA 2006-6317, 2006
    [13]
    Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme[J]. J. Comp. Phys., 2001, 174:38-80
    [14]
    Park C, Howe J, Jaffe R, et al. Review of chemical-kinetic problems of future NASA missions, II: Mars entries[J]. J. Thermophys. Heat Trans., 1994, 8(1):9-23
    [15]
    Park C. Review of chemical-kinetic problems of future NASA missions, I: Earth entries[J]. J. Thermophys. Heat Trans., 1993, 7(3):385-398
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1522) PDF Downloads(2155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return