Volume 42 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
WANG Chi, WANG Jiangyan, XU Jiyao. Research Advances of the Chinese Meridian Project in 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 574-583 doi: 10.11728/cjss2022.04.yg04
Citation: WANG Chi, WANG Jiangyan, XU Jiyao. Research Advances of the Chinese Meridian Project in 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 574-583 doi: 10.11728/cjss2022.04.yg04

Research Advances of the Chinese Meridian Project in 2020–2021

doi: 10.11728/cjss2022.04.yg04
More Information
  • Author Bio:

    E-mail: cw@swl.ac.cn

  • Received Date: 2022-05-27
    Available Online: 2022-06-21
  • The Chinese Meridian Project (CMP) is a major national science and technology infrastructure invested and constructed by the Chinese government. The project builds space environment observation stations, focusing on the monitoring of the space environment over China, so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change, and making important innovative scientific achievements. The first phase of the CMP passed the national acceptance in 2012. It has been running for nearly ten years and has accumulated more than 8 TB monitoring data. These data are all available to all data users through the data center of the project. From 2020 to 2021, users of CMP data have completed a series of original works, which have solved current scientific problems in the field of space physics research. On the other hand, they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.

     

  • loading
  • [1]
    CHENG C, YI F. Falling mixed-phase ice virga and their liquid parent cloud layers as observed by ground-based lidars[J]. Remote Sensing, 2020, 12(13): 2094 doi: 10.3390/rs12132094
    [2]
    WANG W, YI F, LIU F C, et al. Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a 30°N plain site[J]. Remote Sensing, 2020, 12(23): 3998 doi: 10.3390/rs12233998
    [3]
    QIU S C, WANG N, SOON W, et al. The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres[J]. Atmospheric Chemistry and Physics, 2021, 21(15): 11927-11940 doi: 10.5194/acp-21-11927-2021
    [4]
    GERDING M, DALY S, PLANE J M C. Lidar soundings of the mesospheric nickel layer using Ni(3F) and Ni(3D) transitions[J]. Geophysical Research Letters, 2019, 46(1): 408-415 doi: 10.1029/2018GL080701
    [5]
    ZOU X, WANG J H, LI F Q, et al. Atmospheric turbulence spectrum in high resolution mode detected by a high power-aperture sodium lidar over Yanqing, Beijing (40.47°N, 115.97°E)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270: 107706 doi: 10.1016/j.jqsrt.2021.107706
    [6]
    ZHANG W F, CHEN G, ZHANG S D, et al. Statistical study of the mid-latitude mesospheric vertical winds observed by the Wuhan and Beijing MST radars in China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(18): e2020JD032776
    [7]
    LI N, LUAN X L, LEI J H, et al. Variations of mesospheric neutral winds and tides observed by a meteor radar chain over China during the 2013 sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027443
    [8]
    GONG Y, XUE J W, MA Z, et al. Strong quarter diurnal tides in the mesosphere and lower thermosphere during the 2019 Arctic sudden stratospheric warming over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA029066
    [9]
    LUO J H, GONG Y, MA Z, et al. Study of the quasi 10‐day waves in the MLT region during the 2018 February SSW by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028367
    [10]
    MA Z, GONG Y, ZHANG S D, et al. Study of a Quasi 4‐day oscillation during the 2018/2019 SSW over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027687
    [11]
    HUANG F Q, LEI J H, ZHANG R L, et al. Prominent daytime TEC enhancements under the quiescent condition of January 2017[J]. Geophysical Research Letters, 2020, 47(14): e2020GL088398
    [12]
    LIU J, ZHANG D H, HAO Y Q, et al. Multi‐instrumental observations of the quasi‐16‐day variations from the lower thermosphere to the topside ionosphere in the low‐latitude eastern Asian sector during the 2017 sudden stratospheric warming event[J]. Journal of Geophysical Research: Space Physics, 2020, 125(3): e2019JA027505
    [13]
    MO X H, ZHANG D H. Six‐day periodic variation in equatorial ionization anomaly region[J]. Journal of Geophysical Research: Space Physics, 2020, 125(11): e2020JA028225
    [14]
    JIANG G Y, XIONG C, STOLLE C, et al. Comparison of thermospheric winds measured by GOCE and ground‐based FPIs at low and middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028182
    [15]
    LIU X, XU J Y, YUE J, et al. Global balanced wind derived from SABER temperature and pressure observations and its validations[J]. Earth System Science Data, 2021, 13(12): 5643-5661 doi: 10.5194/essd-13-5643-2021
    [16]
    LIU L, DING Z H, LE H J, et al. New features of the enhancements in electron density at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027539
    [17]
    LIU L B, DING Z H, ZHANG R L, et al. A case study of the enhancements in ionospheric electron density and its longitudinal gradient at Chinese low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027751
    [18]
    LI W B, CHEN Y D, LIU L B, et al. A statistical study on the winter ionospheric nighttime enhancement at middle latitudes in the Northern Hemisphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027950
    [19]
    CHEN G, WANG Z H, JIN H, et al. A case study of the daytime intense radar backscatter and strong ionospheric scintillation related to the low-latitude E-region irregularities[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027532
    [20]
    SUN W J, NING B Q, HU L H, et al. The evolution of complex Es observed by multi instruments over low‐latitude China[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2019JA027656
    [21]
    HU L H, ZHAO X K, SUN W J, et al. Statistical characteristics and correlation of low‐latitude F region bottom‐type irregularity layers and plasma plumes over Sanya[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA027855
    [22]
    ZHAO X K, XIE H Y, HU L H, et al. Climatology of equatorial and low-latitude F region kilometer-scale irregularities over the meridian circle around 120°E/60°W[J]. GPS Solutions, 2021, 25(1): 20 doi: 10.1007/s10291-020-01054-2
    [23]
    XIE H Y, LI G Z, ZHAO X K, et al. Coupling between E region quasi‐periodic echoes and F region medium‐scale traveling ionospheric disturbances at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027720
    [24]
    HU L H, LEI J H, SUN W J, et al. Latitudinal variations of daytime periodic ionospheric disturbances from Beidou GEO TEC observations over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028809
    [25]
    SUN L C, XU J Y, ZHU Y J, et al. Interaction between a southwestward propagating MSTID and a poleward moving WSA‐like plasma patch on a magnetically quiet night at midlatitude China region[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028085
    [26]
    XU J Y, LI Q Z, SUN L C, et al. The ground‐based airglow imager network in China: recent observational results[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. American Geophysical Union, 2021: 365-394
    [27]
    WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium‐scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723
    [28]
    WU K, XU J Y, ZHU Y J, et al. Ionospheric plasma vertical drift and zonal wind variations cause unusual evolution of EPBs during a geomagnetically quiet night[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029893
    [29]
    SUN L C, XU J Y, ZHU Y J, et al. Interaction between an EMSTID and an EPB in the EIA Crest Region over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA029005
    [30]
    LUO J, XU J Y, WU K, et al. The influence of ionospheric neutral wind variations on the morphology and propagation of medium scale traveling ionospheric disturbances on 8 th August 2016[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029037
    [31]
    YU B K, XUE X H, SCOTT C J, et al. Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation[J]. Atmospheric Chemistry and Physics, 2021, 21(5): 4219-4230 doi: 10.5194/acp-21-4219-2021
    [32]
    YU B, SCOTT C J, XUE X H, et al. A signature of 27-day solar rotation in the concentration of metallic ions within the terrestrial ionosphere[J]. The Astrophysical Journal, 2021, 916(2): 106 doi: 10.3847/1538-4357/ac0886
    [33]
    SUN W, ZHAO X, HU L, et al. Morphological characteristics of thousand‐kilometer‐scale Es structures over China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028712
    [34]
    SUN W J, HU L H, YANG Y Y, et al. Occurrences of regional strong Es irregularities and corresponding scintillations characterized using a high‐temporal‐resolution GNSS network[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029460
    [35]
    TANG Q, ZHAO J Q, YU Z B, et al. Occurrence and variations of middle and low latitude sporadic E layer investigated with longitudinal and latitudinal chains of ionosondes[J]. Space Weather, 2021, 19(12): e2021SW002942
    [36]
    TANG Q, ZHOU C, LIU H X, et al. The possible role of turbopause on sporadic‐E layer formation at middle and low latitudes[J]. Space Weather, 2021, 19(12): e2021SW002883
    [37]
    ZHANG Q H, ZHANG Y L, WANG C, et al. A space hurricane over the Earth’s polar ionosphere[J]. Nature Communications, 2021, 12(1): 1207 doi: 10.1038/s41467-021-21459-y
    [38]
    ZHANG Q H, ZHANG Y L, WANG C, et al. Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16193-16198 doi: 10.1073/pnas.2000614117
    [39]
    WANG Y, ZHANG Q H, MA Y Z, et al. Polar ionospheric large‐scale structures and dynamics revealed by TEC keogram extracted from TEC maps[J]. Journal of Geophysical Research: Space Physics, 2020, 125(1): e2019JA027020
    [40]
    ZHANG D, ZHANG Q H, MA Y Z, et al. Solar and geomagnetic activity impact on occurrence and spatial size of cold and hot polar cap patches[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094526
    [41]
    MA Y Z, ZHANG Q H, LYONS L R, et al. Is westward travelling surge driven by the polar cap flow channels[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028498
    [42]
    LIU J, WANG W B, QIAN L Y, et al. Solar flare effects in the Earth’s magnetosphere[J]. Nature Physics, 2021, 17(7): 807-812 doi: 10.1038/s41567-021-01203-5
    [43]
    LIU J, QIAN L Y, MAUTE A, et al. Electrodynamical coupling of the geospace system during solar flares[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028569
    [44]
    LI Q L, HUANG F Q, ZHONG J H, et al. Persistence of the long‐duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2020, 125(11): e2020JA028238
    [45]
    REN D X, LEI J H, ZHOU S, et al. High‐speed solar wind imprints on the ionosphere during the recovery phase of the August 2018 geomagnetic storm[J]. Space Weather, 2020, 18(7): e2020SW002480
    [46]
    JIMOH O, LEI J H, HUANG F Q. Investigation of daytime total electron content enhancements over the Asian-Australian sector observed from the Beidou geostationary satellite during 2016–2018[J]. Remote Sensing, 2020, 12(20): 3406 doi: 10.3390/rs12203406
    [47]
    OWOLABI C, LEI J H, BOLAJI O S, et al. Ionospheric current variations induced by the solar flares of 6 and 10 September 2017[J]. Space Weather, 2020, 18(11): e2020SW002608
    [48]
    ZHANG R L, LE H J, LI W B, et al. Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028450
    [49]
    HUANG F Q, LI Q L, SHEN X H, et al. Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028483
    [50]
    ZHANG J J, YU Y Q, WANG C, et al. Measurements and simulations of the geomagnetically induced currents in low‐latitude power networks during geomagnetic storms[J]. Space Weather, 2020, 18(8): e2020SW002549
    [51]
    HE J H, YUE X, HU L, et al. Observing system impact on ionospheric specification over China using EnKF assimilation[J]. Space Weather, 2020, 18(10): e2020SW002527
    [52]
    XU J Y, LIU W J, BIAN J C, et al. Method for retrieval of atmospheric water vapor using OH airglow for correction of astronomical observations[J]. Astronomy & Astrophysics, 2020, 639: A29
    [53]
    KONG W Q, HU Z J, WU J J, et al. A comparative study of estimating auroral electron energy from ground-based hyperspectral imagery and DMSP-SSJ5 particle data[J]. Remote Sensing, 2020, 12(14): 2259 doi: 10.3390/rs12142259
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(237) PDF Downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return