留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICME期间磁暴的太阳风参数和极光沉降能量

李祥雨 牛超 徐步云 康志谦 刘代志

李祥雨, 牛超, 徐步云, 康志谦, 刘代志. ICME期间磁暴的太阳风参数和极光沉降能量[J]. 空间科学学报, 2019, 39(3): 310-315. doi: 10.11728/cjss2019.03.310
引用本文: 李祥雨, 牛超, 徐步云, 康志谦, 刘代志. ICME期间磁暴的太阳风参数和极光沉降能量[J]. 空间科学学报, 2019, 39(3): 310-315. doi: 10.11728/cjss2019.03.310
LI Xiangyu, NIU Chao, XU Buyun, KANG Zhiqian, LIU Daizhi. Solar Wind Parameters and Auroral Hemispheric Power of Magnetic Storm during ICME[J]. Chinese Journal of Space Science, 2019, 39(3): 310-315. doi: 10.11728/cjss2019.03.310
Citation: LI Xiangyu, NIU Chao, XU Buyun, KANG Zhiqian, LIU Daizhi. Solar Wind Parameters and Auroral Hemispheric Power of Magnetic Storm during ICME[J]. Chinese Journal of Space Science, 2019, 39(3): 310-315. doi: 10.11728/cjss2019.03.310

ICME期间磁暴的太阳风参数和极光沉降能量

doi: 10.11728/cjss2019.03.310
基金项目: 

国家自然科学基金项目资助(4177040507)

详细信息
    作者简介:

    李祥雨,E-mail:sin1994079@aliyun.com

  • 中图分类号: P353

Solar Wind Parameters and Auroral Hemispheric Power of Magnetic Storm during ICME

  • 摘要: 基于1995-2004年ICME驱动的强烈磁暴(SA型)、强磁暴(SB型)和延迟型主相暴(SC型)三种磁暴类型,对1AU处太阳风动压、太阳风速度、行星际磁场、EK-L电场以及极光沉降能量进行时序叠加分析,并分别与-vBz耦合函数和Newell耦合函数进行对比.结果表明,三种磁暴在ICME到达前期的太阳风动压较稳定,背景太阳风、极光沉降能量、行星际磁场和磁层存在相对平静期.ICME到达前期SA型磁暴的背景太阳风速度、行星际磁场南向分量以及极光沉降能量的均值高于另外两种磁暴类型,这说明大型日冕物质抛射在ICME到达前就对行星际磁场、背景太阳风和HP产生了影响.磁暴急始后,SC型磁暴的EK-L电场斜率小,峰值延后且行星际磁场北向分量增强,这些都是磁暴主相延迟的表现,极光沉降能量随着行星际磁场转为南向而增加.

     

  • [1] SINGH S, PANDAY A C. Effect of geomagnetic storms and their association with solar wind velocity and IMF during solar cycle 23 and 24[J]. Int. J. Pure Appl. Phys., 2017, 13(1):35-43
    [2] LOU Fei, YE Yudong. Statistical comparison of magnetic clouds with nonmagnetic clouds in interplanetary coronal mass ejections for solar cycle 24[J]. Chin. J. Space Sci., 2017, 37(4):381-394(娄飞, 叶煜东. 第24太阳活动周地球附近磁云与非磁云事件的统计分析[J]. 空间科学学报, 2017, 37(4):381-394)
    [3] LI Zhongyi, LE Guiming, PEI Shixin. IMF sector effect on geomagnetic field at MID and low latitudes during solar cycle 23[J]. Chin. J. Space Sci., 2017, 37(1):19-27(李仲怡,乐贵明,裴世鑫. 第23周太阳活动周行星际磁场扇形结构对中低纬地磁场的影响[J]. 空间科学学报, 2017, 37(1):19-27)
    [4] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a Geomagnetic Storm[J]. J. Geophys. Res., 1994, 99(A4):5771-5792
    [5] VOKHMYANINM V, PONYAVIN D I. Reconstruction of the sector structure of the interplanetary magnetic field by geomagnetic station data[J]. Geomag. Aeron., 2012, 52(6):755-762
    [6] STERN D P. Energetics of the magneto-sphere[J]. Space Sci. Rev., 1984, 39(1/2):193-213
    [7] LU G, RICHMOND A D, EMERY B A, et al. Magnetosphere-ionosphere-thermosphere Coupling:effect of neutral wind on energy transfer and field-aligned current[J]. J. Geophys. Res., 1995, 100(A10):19643-19659
    [8] XU Wenyao. Energy budget in the coupling processes of the solar wind, magnetosphere and ionosphere[J]. Chin. J. Space Sci., 2011, 31(1):1-14(徐文耀.太阳风elax-elax磁层elax-lax电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1):1-14)
    [9] SISCOE G L, FORMISANO V, LAZARUS A J. Relation between geomagnetic sudden impulses and solar wind pressure changes-an experimental investigation[J]. J. Geophys. Res., 1968, 73:4869-4874
    [10] WANG C, LI H, RICHARDSON J D, et al. Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impulses observed on the ground[J]. J. Geophys. Res., 2010, 115(A9):1-10
    [11] CANE H V, RICHARDSON I G, STCYR O C. Coronal mass ejections, inter-planetary ejecta and geomagnetic storms[J]. Geophys. Res. Lett., 2000, 27(21):3591-3594
    [12] LI H, WANG C, MIDDAY J R. Midday magnetopause shifts earthward of geosynchronous orbit during geomagnetic superstorms with Dst ≤ 300nT[J]. J. Geophys. Res., 2010, 115(A8). DOI: 10.1029/2009JA014612
    [13] BRAUTIGAM D H, GUSSENHOVEN M S, HARDY D A. A statistical study on the effects of IMF Bz and solar wind speed on auroral ion and electron precipitation[J]. J. Geohys. Res.:Space Phys., 1991, 96(A4):5525-5538
    [14] HARDY D A, GUSSENHOVEN M S, HOLEMAN E A. A statistical model of auroral electron precipittion[J]. J. Geohys. Res.:Space phys., 1985, 90(A5):4229-4248
    [15] Emery B A, Coumans Valérie, David S, et al. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power[J]. J. Geophys. Res., 2008, 113(A6):1-25
    [16] LUAN Xiaoli, WANG Wenbin, BURNS Alan, et al. Seasonal and hemispheric variations of the total auroral precipitation energy flux from TIMED/GUVI[J]. J. Geophys. Res., 2010, 115(A11):1-15
    [17] CHEN X, FU S Y, CHENG L, et al. Auroral hemispheric power during geomagnetic storms driven by different interplanetary disturbances[J]. Chin. J. Geophys., 2014, 57(11):3766-3776
    [18] LI Jian. Radial Evolution of Large-scale Solar Wind Structures[D]. Los Angeles:University of California, 2008
    [19] ZHANG Gongliang. Morphological types of magnetic storms and characteristics of interplanetary magnetic clouds[J]. Sci. China, 1990, 10:1068-1078
    [20] NEWELL P T, SOTIRE T LIOUK. A nearly universal solar wind-magnetosphere coupling function inferred from 10mag-netospheric state variables[J]. J. Geohys. Res.:Space Phys., 2007, 112(A1):1-16
  • 加载中
计量
  • 文章访问数:  3140
  • HTML全文浏览量:  99
  • PDF下载量:  14789
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-12-11
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回