留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高光谱遥感成像技术的发展与展望

王建宇 李春来

王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1): 22-33. doi: 10.11728/cjss2021.01.022
引用本文: 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1): 22-33. doi: 10.11728/cjss2021.01.022
WANG Jianyu, LI Chunlai. Development and Prospect of Hyperspectral Imager and Its Application[J]. Chinese Journal of Space Science, 2021, 41(1): 22-33. doi: 10.11728/cjss2021.01.022
Citation: WANG Jianyu, LI Chunlai. Development and Prospect of Hyperspectral Imager and Its Application[J]. Chinese Journal of Space Science, 2021, 41(1): 22-33. doi: 10.11728/cjss2021.01.022

高光谱遥感成像技术的发展与展望

doi: 10.11728/cjss2021.01.022
详细信息
    作者简介:

    王建宇,E-mail:jywang@mail.sitp.ac.cn

  • 中图分类号: V443

Development and Prospect of Hyperspectral Imager and Its Application

  • 摘要: 地表形态和目标特性是空间对地遥感的两个重要问题.经过近40年的发展,高光谱遥感技术已取得了巨大的进展,从数据获取、处理到应用都积累了大量成果.作为涉及多学科交叉的年轻学科,高光谱遥感技术的发展经历了一个以需求为导向,在发展中又不断探索完善需求的历程.高光谱成像仪作为获取目标图谱数据的重要仪器,其发展对于整个高光谱遥感的发展至关重要.本文分析了国内外不同类型高光谱成像仪的成像体制及应用案例,得出了近40年来高光谱成像仪发展历程所展现出的技术特点,结合当前发展现状,对未来高光谱成像仪的发展趋势,尤其是核心指标的提升和技术体制拓展进行了综合展望,以期为该领域的后续研究提供一些思路,同时为相关领域的科技规划提供参考.

     

  • [1] GOETZ A F H, VANE G, SOLOMON J, et al. Imaging spectrometry for Earth remote sensing[J]. Science, 1985, 228:1147-1153
    [2] VANE G, GOETZ A F H, WELLMAN J. Airborne imaging spectrometer:a new tool for remote sensing[J]. IEEE Trans. Int. Geosci. Remote Sens., 1984, 22(6):546-549
    [3] VANE G, GREEN R O, CHRIEN T G, et al. The airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sens. Environ., 1993, 44(2-3):127-143
    [4] YUEN P W T, RICHARDSON M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition[J]. Imag. Sci. J., 2010, 58(5):241-253
    [5] JAN H, ZBYNEK M, LUCIE H, et al. Potentials of the VNIR airborne hyperspectral system AISA eagle[J]. GIS Ostrava, 2008, 27:1-6
    [6] MCFEE J E, RIPLEY H T. Detection of buried land mines using a CASI hyperspectral imager[J]. Proceed. SPIE Int. Soc. Opt. Photon., 1997, 3079:738-749
    [7] ACHAL S, MCFEE J E, IVANCO T, et al. A thermal infrared hyperspectral imager (tasi) for buried landmine detection[J]. Int. Soc. Opt. Photon., 2007, 6553:655316
    [8] CHAPMAN J W, THOMPSON D R, HELMLINGER M C, et al. Spectral and radiometric calibration of the Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG)[J]. Remote Sens., 2019, 11:2129-1-2129-18
    [9] MARMO J, FOLKMAN M A, KUWAHARA C Y, et al. Lewis hyperspectral imager payload development[J]. Int. Soc. Opt. Photon., 1996, 2819:80-90
    [10] WILLOUGHBY C T, MARMO J, FOLKMAN M A. Hyperspectral imaging payload for the NASA small satellite technology initiative program[C]//1996 IEEE Aerospace Applications Conference. Proceedings. Aspen:IEEE, 1996:67-79
    [11] YARBROUGH S, CAUDILL T R, KOUBA E T, et al. MightySat II. 1 hyperspectral imager:summary of on-orbit performance[C]//Imaging Spectrometry VII. San Diego:International Society for Optics and Photonics, 2002:186-197
    [12] LEE C M, CABLE M L, HOOK S J, et al. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities[J]. Remote Sens. Environ., 2015, 167:6-19
    [13] JOHNSON W R, HOOK S J, MOUROULIS P Z, et al. QWEST:quantum well infrared Earth science testbed[C]//Imaging Spectrometry XIII. San Diego:International Society for Optics and Photonics, 2008:708606
    [14] LUCEY P G, WILLIAMS T J, MIGNARD M, et al. AHI:an airborne long-wave infrared hyperspectral imager[C]//Airborne Reconnaissance XXII. San Diego:International Society for Optics and Photonics, 1998:36-43
    [15] LIU Yinnian, XUE Yongqi, WANG Jianyu, et al. Operational modular imaging spectrometer[J]. J. Infrared Millim. Waves, 2002, 21(1):9-13(刘银年, 薛永祺, 王建宇, 等. 实用型模块化成像光谱仪[J]. 红外与毫米波学报, 2002, 21(1):9-13)
    [16] DONG Guangjun, ZHANG Yongsheng, FAN Yonghong. Image fusion for hyperspectral date of PHI and high-resolution aerial image[J]. J. Infrared Millim. Waves, 2006, 25(2):123-126(董广军, 张永生, 范永弘. PHI高光谱数据和高空间分辨率遥感图像融合技术研究[J]. 红外与毫米波学报, 2006, 25(2):123-126)
    [17] PUCKRIN E, TURCOTTE C S, LAHAIE P, et al. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications III. Grenoble:International Society for Optics and Photonics, 2009:74820S
    [18] WARREN D W, BOUCHER R H, GUTIERREZ D J, et al. MAKO:a high-performance, airborne imaging spectrometer for the long-wave infrared[C]//Imaging Spectrometry XV. Grenoble:International Society for Optics and Photonics, 2010:78120N
    [19] JEFFREY L H, RICHARD H B, KERRY N B, et al. MAKO airborne thermal infrared imaging spectrometer:performance update[C]//Imaging Spectrometry XXI. San Diego:International Society for Optics and Photonics, 2016
    [20] COUDRAIN C, BERNHARDT S, CAES M, et al. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures[J]. Opt. Express, 2015, 23(12):16164-16176
    [21] LIU C, XU R, XIE F, et al. New airborne thermal-infrared hyperspectral imager system:initial validation[J]. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020, 13:4149-4165
    [22] BARNSLEY M J, SETTLE J J, CUTTER M A, et al. The PROBA/CHRIS MISSION:a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere[J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(7):1512-1520
    [23] RAST M, BEZY J L, BRUZZI S. The ESA Medium resolution imaging spectrometer MERIS a review of the instrument and its mission[J]. Int. J. Remote Sens., 1999, 20(9):1681-1702
    [24] MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. J. Geophys. Res.:Planet., 2007, 112(E5):DOI: 10.1029/2006JE002682
    [25] WANG Q, WU C Q, LI Q, et al. Chinese HJ-1A/B satellites and data characteristics[J]. Sci. China Earth Sci., 2010, 53(1):51-57
    [26] STRAIGHT S, DOOLITTLE C, COOLEY T, et al. Tactical satellite-3 mission overview and initial lessons learned[C]//24th Annual AIAA/USU Conference on Small Satellite. North Logan:AIAA, 2010
    [27] YE B, TIAN S, CHENG Q, et al. Application of lithological mapping based on Advanced Hyperspectral Imager (AHSI) imagery onboard Gaofen-5(GF-5) satellite[J]. Remote Sens., 2020, 12(23):3990
    [28] GALEAZZI C, SACCHETTI A, CISBANI A, et al. The PRISMA program[C]//IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium. Boston:IEEE, 2008:IV-105-IV-108
    [29] YE Peijian, SUN Zezhou, RAO Wei, et al. Mission overview and key technologies of the first Mars probe of China[J]. Sci. China:Technol. Sci., 2017, 60(5):649-657
    [30] GUANTER L, KAUFMANN H, SEGL K, et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation[J]. Remote Sens., 2015, 7(7):8830-8857
    [31] LIU Y, WANG J, YAO L, et al. The TanSat mission:preliminary global observations[J]. Sci. Bull., 2018, 63(18):1200-1207
    [32] NEUGEBAUERH G, HABING J, DUINEN R J, et al. The Infrared Astronomical Satellite (IRAS) mission[J]. Astrophys. J., 1984, 278:1-6
  • 加载中
计量
  • 文章访问数:  2113
  • HTML全文浏览量:  319
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-03
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回