留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中纬度地磁暴期间热层垂直风响应机制的模拟

苏烨 李婧媛 吕建永 王明 魏官纯 孙梦 熊世平 李正

苏烨, 李婧媛, 吕建永, 王明, 魏官纯, 孙梦, 熊世平, 李正. 中纬度地磁暴期间热层垂直风响应机制的模拟[J]. 空间科学学报, 2022, 42(2): 246-254. doi: 10.11728/cjss2022.02.210303023
引用本文: 苏烨, 李婧媛, 吕建永, 王明, 魏官纯, 孙梦, 熊世平, 李正. 中纬度地磁暴期间热层垂直风响应机制的模拟[J]. 空间科学学报, 2022, 42(2): 246-254. doi: 10.11728/cjss2022.02.210303023
SU Ye, LI Jingyuan, LÜ Jianyong, WANG Ming, WEI Guanchun, SUN Meng, XIONG Shiping, LI Zheng. Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 246-254. DOI: 10.11728/cjss2022.02.210303023
Citation: SU Ye, LI Jingyuan, LÜ Jianyong, WANG Ming, WEI Guanchun, SUN Meng, XIONG Shiping, LI Zheng. Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 246-254. DOI: 10.11728/cjss2022.02.210303023

中纬度地磁暴期间热层垂直风响应机制的模拟

doi: 10.11728/cjss2022.02.210303023
基金项目: 国家自然科学基金项目(42030203,42004132,42074183),基础性科研院所稳定支持项目(A131901W14)和南京信息工程大学人才启动经费项目(2020r052)共同资助
详细信息
    通讯作者:

    E-mail:李婧媛,jingyuanli@nuist.edu.cn

    吕建永,jylu@nuist.edu.cn

  • 中图分类号: P352

Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes

  • 摘要: 基于TIMEGCM模型,研究了2005年9月10日中纬度地磁暴期间热层(100~650 km)水平风场变化对垂直风的影响。通过连续性方程诊断分析了暴时引起垂直风场变化的机制,结果表明:250 km以上的垂直风场取决于水平风场的变化,而250 km以下的垂直风场由较高高度的垂直风拉动;在地磁暴初相开始时,经向风场相比纬向风场对暴时250 km以上的垂直风场影响更为显著,随着地磁扰动增强,纬向风场对垂直风场变化的贡献更大;温度场对地磁暴的响应遵循同样规律,扰动开始时,温度沿经线传播更快,经向风变化更大,扰动增强后,温度沿纬线传播更快,纬向风变化更大。

     

  • 图  1  2005年9月10日全天的Kp值(黑色折线为Kp值,黑色横虚线表示Kp=2.3,黑色竖虚线表示磁暴扰动开始的时间)

    Figure  1.  Kp value of the whole day on 10 September 2005 (The black polyline is the Kp value, the black horizontal dashed line represents Kp=2.3, and the black vertical dashed line is the time of the start of the magnetic storm)

    图  2  中纬度地磁暴期间热层水平风场沿纬度压力面网格的变化(F)与垂直风场(向上为正,向下为负;黑色虚线表示250 km高度,黄色和绿色虚线分别代表06:00 UT和18:00 UT时刻)

    Figure  2.  Variation of horizontal wind along the grid of longitude (F) and vertical wind in the thermosphere during mid-latitude geomagnetic storms (Up is positive, down is negative; the black dotted line indicates 250 km height, and the yellow and green dashed lines indicate 06:00 UT and 18:00 UT respectively)

    图  3  中纬度地磁暴期间热层水平风场沿纬度压力面网格的变化(F)与垂直风场 (向上为正,向下为负;黑色虚线为250 km)

    Figure  3.  Variation of horizontal wind along the grid of longitude (F) and vertical wind in the thermosphere during mid-latitude geomagnetic storms (up is positive, down is negative, and the black dotted line is marked as 250 km)

    图  4  中纬度地磁暴期间热层水平风场沿纬度压力面网格的变化(F)与垂直风场 (向上为正,向下为负;黑色虚线为250 km高度)

    Figure  4.  Variation of horizontal wind and vertical wind along the grid of longitude (F) in the thermosphere during mid-latitude geomagnetic storms(Up is positive, down is negative, and the black dotted line is marked as 250 km height)

    图  5  中纬度地磁暴期间高热层纬向风场、经向风场与水平风场的散度暴时变化(向东和向北为正,向西和向南为负;黄色虚线和绿色虚线分别注明了06:00 UT和18:00 UT)

    Figure  5.  Divergence velocity changes of the zonal wind, meridional wind and horizontal wind during geomagnetic storm in the middle latitude (the east is positive and the west is negative; the yellow dotted line and the green dotted lines indicate 06:00 UT and 18:00 UT respectively)

    图  6  中纬度地磁暴期间热层纬向风场和温度场沿纬线的差值与纬向风场(向东为正,向西为负;黄色和绿色虚线分别表示06:00 UT和18:00 UT时刻)

    Figure  6.  Difference between the zonal wind and temperature along the latitude line and the zonal wind during geomagnetic storm in the middle latitude (The east is positive, the west is negative, and the yellow and the green dotted lines indicate 06:00 UT and 18:00 UT respectively)

    图  7  中纬度地磁暴期间热层温度场和经向风场沿经线的差值与经向风场(向东为正,向西为负,黑色虚线标注的是250 km,黄色和绿色虚线分别表示06:00 UT和18:00 UT时刻)

    Figure  7.  Difference between the temperature of the hyperthermia and the meridional wind along the meridian during the mid-latitude geomagnetic storm and the meridional wind (North is positive, south is negative, and the yellow and the green dotted lines indicate 06:00 UT and 18:00 UT respectively)

  • [1] LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chinese Journal of Geophysics, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101
    [2] DICKINSON R E, GEISLER J E. Vertical motion field in the middle thermosphere from satellite drag densities[J]. Monthly Weather Review, 1968, 96(9): 606-616 doi: 10.1175/1520-0493(1968)096<0606:VMFITM>2.0.CO;2
    [3] RISHBETH H, MOFFETT R J, BAILEY G J. Continuity of air motion in the mid-latitude thermosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1969, 31(8): 1035-1047 doi: 10.1016/0021-9169(69)90103-2
    [4] BURNSIDE R G, HERRERO F A, MERIWETHER JR J W, et al. Optical observations of thermospheric dynamics at Arecibo[J]. Journal of Geophysical Research, 1981, 86(A7): 5532-5540 doi: 10.1029/ja086ia07p05532
    [5] HERNANDEZ G. Vertical motions of the neutral thermosphere at midlatitude[J]. Geophysical Research Letters, 1982, 9(5): 555-557 doi: 10.1029/gl009i005p00555
    [6] SPENCER N W, THEIS R F, WHARTON L E, et al. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves[J]. Geophysical Research Letters, 1976, 3(6): 313-316 doi: 10.1029/gl003i006p00313
    [7] HARDING B J, MAKELA J J, QIN J Q, et al. Atmospheric scattering effects on ground-based measurements of thermospheric vertical wind, horizontal wind, and temperature[J]. Journal of Geophysical Research, 2017, 122(7): 7654-7669 doi: 10.1002/2017ja023942
    [8] HU Guoyuan, AI Yong, ZHANG Yange, et al. A method for vertical neutral wind in the thermosphere deduced from all-sky FPI measurements[J]. Chinese Journal of Geophysics, 2014, 57(11): 3695-3702 doi: 10.6038/cjg20141124
    [9] ZHANG S R, ERICKSON P J, FOSTER J C, et al. Thermospheric poleward wind surge at midlatitudes during great storm intervals[J]. Geophysical Research Letters, 2015, 42(13): 5132-5140 doi: 10.1002/2015GL064836
    [10] ZHANG R L, LIU L B, LE H J, et al. Equatorial ionospheric electrodynamics over Jicamarca during the 6-11 September 2017 space weather event[J]. Journal of Geophysical Research, 2019, 124(2): 1292-1306 doi: 10.1029/2018JA026295
    [11] BIONDI M A. Measured vertical motion and converging and diverging horizontal flow of the midlatitude thermosphere[J]. Geophysical Research Letters, 1984, 11(1): 84-87 doi: 10.1029/gl011i001p00084
    [12] REES D, SMITH R W, CHARLETON P J, et al. The generation of vertical thermospheric winds and gravity waves at auroral latitudes—I. Observations of vertical winds[J]. Planetary and Space Science, 1984, 32(6): 667 doi: 10.1016/0032-0633(84)90092-8
    [13] PETEHERYCH S, SHEPHERD G G, WALKER J K. Observation of vertical E-region neutral winds in two intense auroral arcs[J]. Planetary and Space Science, 1985, 33(8): 869-873 doi: 10.1016/0032-0633(85)90101-1
    [14] SMITH R W, HERNANDEZ G. Vertical winds in the thermosphere within the polar cap[J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(6): 611-620 doi: 10.1016/0021-9169(94)00101-s
    [15] LI J Y, WANG W B, LU J Y, et al. On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes[J]. Geophysical Research Letters, 2018, 45(19): 10128-10137 doi: 10.1029/2018gl078968
    [16] LI J Y, WANG W B, LU J Y, et al. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes[J]. Journal of Geophysical Research, 2019, 124(5): 3666-3680 doi: 10.1029/2019ja026533
    [17] RICHMOND A D, RIDLEY E C, ROBLE R G. A thermosphere/ionosphere general circulation model with coupled electrodynamics[J]. Geophysical Research Letters, 1992, 19(6): 601-604 doi: 10.1029/92GL00401
    [18] RICHMOND A D. Ionospheric electrodynamics[M]//VOLLAND H. Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press, 1995: 249-290
    [19] ROBLE R G, RIDLEY E C. An auroral model for the NCAR thermospheric general circulation model (TGCM)[J]. Annales Geophysicae Series A-upper Atmosphere and Space Sciences, 1987, 5(6): 369-382
    [20] ROBLE R G, RIDLEY E C. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30-500 km)[J]. Geophysical Research Letters, 1994, 21(6): 417-420 doi: 10.1029/93gl03391
    [21] ROBLE R G. Energetics of the mesosphere and thermosphere[M]//JOHNSON R M, KILLEEN T L. The Upper Mesosphere and Lower Thermosphere: A review of Experiment and Theory. Washington: American Geophysical Union, 1995: 1-21
    [22] ROBLE R G. The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM)[M]//SCHUNK R W. Solar-Terrestrial Energy Program: Handbook of Ionospheric Models. Logan: Utah State University, 1996: 281-288
    [23] HEELIS R A, LOWELL J K, SPIRO R W. A model of the high-latitude ionospheric convection pattern[J]. Journal of Geophysical Research, 1982, 87(A8): 6339-6345 doi: 10.1029/JA087iA08p06339
    [24] KLIMENKO M V, KLIMENKO V V, RATOVSKY K G, et al. Ionospheric effects caused by the series of geomagnetic storms of September 9-14, 2005[J]. Geomagnetism and Aeronomy, 2011, 51(3): 364-376 doi: 10.1134/s0016793211030108
  • 加载中
图(7)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  179
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 录用日期:  2021-05-13
  • 修回日期:  2021-05-28
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回